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Abstract. Minimum weight edge covering problem has been investigated in many scien-
tific and engineering applications. The traditional minimum weight edge covering problem
assumes that the edge weight is a crisp value. As an empirical or subjective estimation,
however, edge weight is more suitable to be regarded as an uncertain variable. In this
paper, the minimum weight edge covering problem with vertex weight constraint under
uncertain environment is considered. First, with different criteria, two types of uncertain
programming models are constructed for the problem. Furthermore, the proposed models
can be transformed into their corresponding deterministic forms by taking advantage of
some properties of the uncertainty theory. At the end, two numerical examples are pre-
sented to illustrate the applicability of the proposed models.
Keywords: Edge covering problem, Graph theory, Uncertain programming, Uncertainty
theory, Vertex weight constraint

1. Introduction. Minimum weight edge covering problem (MWECP) is a classic prob-
lem in graph theory. Given an undirect graph with an edge weight, MWECP is to find
an edge cover with the minimum weight, where an edge cover is a set of edges such that
every vertex in the graph is an endpoint of at least one edge in the set [14, 15]. Recently,
MWECP has been employed to model many issues in various real-life applications, such
as computer science, combinational mathematics, and management engineering.

Norman and Rabin [16] first studied a particular class of edge covering problem where
the weight on every edge is the same number, which is equivalent to minimizing the
cardinality of the edge cover. In the following years, the research work on MWECP mostly
focused on the deterministic cases. However, due to the lack of history data or emergency
events, the edge weights are nondeterministic in many situations. In these cases, it is
unsuitable to employ classical models to study the MWECP. Therefore, several researches
have been presented within the framework of probability theory. Kardoš et al. [9] studied
the maximum edge-cuts in random cubic graphs with large girth. In the meantime, Ni
[14] considered the randomness in MWECP and introduced random variables to describe
stochastic weights.

It is undeniable that probability theory is a useful tool to deal with indeterminacy
factor. However, we often lack in observed data to estimate the probability distribution
of the edge weights via statistics. In such case, we have no choice but to invite some
domain experts to give the belief degree about each weight of an edge. According to
Kahneman and Tversky [8], human beings usually overweight unlikely events, and thus
the estimated probability distribution based on experts’ estimations may be far from the
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cumulative frequency. In this situation, if we insist on dealing with the belief degree by
using probability theory, some counterintuitive phenomena may happen (Liu [13]).

In the year of 2007, Liu [10] founded an uncertainty theory to deal with experts’ belief
degree mathematically, and Liu [12] perfected it based on normality, duality, subadditiv-
ity, and product measure axioms. In practical aspect, the uncertain programming was
proposed by Liu [11] as a spectrum of mathematical programming involving uncertain
variables. The concerns of using the uncertain programming to deal with the optimiza-
tion problem have been elaborated in a number of papers. For example, Chen et al. [2]
investigated the minimum weight vertex covering problem under uncertain environment.
Yang et al. [17] studied a new class of uncertain furniture production planning problem,
where the customer demand and production costs were characterized by mutually inde-
pendent uncertain variables. Recently, Chen et al. [3] proposed a semivariance method
for diversified portfolio selection in which future security returns were characterized by
uncertain variables. By using uncertain goal programming, Chen et al. [5] investigated
the bicriteria solid transportation problem under uncertain environment.

Motivated by the above mentioned research, this paper concerns about minimum weight
edge covering problem with vertex weight constraint under an uncertain environment, in
which the edge weights are assumed to be uncertain variables. According to different
decision criteria, expected value model and chance-constrained programming model are
proposed. Within the framework of uncertainty theory, the proposed models can be
transformed into their corresponding deterministic forms, which can be solved by LINGO
conveniently. We also conduct a case study to illustrate the applications of the models.
The result shows that the proposed models could solve the minimum weight edge covering
problem with vertex weight constraint under an uncertain environment effectively.

The remainder of this paper is organized as follows. In Section 2, we present the
problem considered in this paper. In Section 3, two types of uncertain programming
models for MWECP are presented, which include expected value model and chance-
constrained programming model. For the sake of illustrating the modeling idea of the
paper, two numerical examples are given in Section 4. A brief summary is presented in
the last section. Preliminaries on uncertainty theory are relegated to the appendix for
clarity of presentation.

2. Problem Description. Let G = (V, E) be an undirected and simple graph with the
set of vertices V = {v1, v2, . . . , vn} and the set of edges E = {(vi, vj) | vi ∈ V, vj ∈ V, i <
j}. A subset of edges X ⊂ E is called an edge cover if each vertex in V is an endpoint of
at least one edge in X. All the weights are presented by a vector w = {wij | (vi, vj) ∈ E}.
We employ a binary decision variable xij to indicate whether the edge (vi, vj) is in the set
X or not

xij =

{
1, if (vi, vj) ∈ X

0, otherwise.

Then decision variable set x = {xij | (vi, vj) ∈ E} corresponding to X is an edge cover
if and only if ∑

j:j<i

xji +
∑
j:j>i

xij ≥ 1, ∀ vi ∈ V.

Thus, the weight of an edge cover X is denoted by

W (x,w) =
∑

(vi,vj)∈E

wijxij.
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In this paper, we consider the MWECP with vertex weight constraint. Mathematically,
the new type of MWECP can be formulated as the following programming model

min
x

∑
(vi,vj)∈E

wijxij

subject to:∑
j:j<i

xji +
∑
j:j>i

xij ≥ 1, ∀ vi ∈ V∑
j:j<i

ηjixji +
∑
j:j>i

ηijxij ≥ ηj, ∀ vi ∈ V

xij ∈ {0, 1} , ∀ (vi, vj) ∈ E.

(1)

In classic deterministic MWECP, each edge (vi, vj) is assigned a crisp value wij that
indicates its weight. In practice, however, the weight of edge is usually nondeterministic.
If there is enough historical data of each edge weight, we can regard the weight as a
random variable, and random MWECP may be considered (see Ni [14]). Unfortunately,
sometimes we cannot get enough historical data, or historical data is invalid because of
conditions’ change. As a result, it is inappropriate to regard subjective estimation weight
data as random variables. So, how can we deal with this kind of nondeterministic factors?
As mentioned before, uncertainty theory provides a new tool to deal with uncertain in-
formation, especially subjective or empirical data. Hence, in this paper, we assume that
the edge weights are all independent uncertain variables. Such independent assumption is
widely used in recent work under uncertain environment (Chen et al. [2], Chen et al. [4],
Zhang et al. [18], to name a few). Then, each edge weight wij is replaced by an uncertain
variable ξij, and all the weights are presented by ξ = {ξij | (vi, vj) ∈ E}. Note that there
exist many uncertain variables in model (1) and they cannot be ranked directly. In order
to optimize the objective, it is inevitable to rank uncertain variables according to some
criteria.

3. Uncertain Minimum Weight Edge Covering Models. In this section, in order to
solve minimum weight edge covering problem in an uncertain environment, we introduce
two different decision criteria in decision theory. According to the decision criteria, we
propose two concepts of minimum weight edge cover and then present two uncertain
programming models for the problem.

3.1. Expected value model. In order to find the optimal cover, we need to rank all
covers according to their weights. However, the weight of any edge is an uncertain variable,
which cannot be ranked directly. A natural decision criterion is based on taking the
expected values as the indices for ranking uncertain variables. The main idea of expected
value model is to optimize the expected objective function.

Definition 3.1. Let G = (V, E) be an undirected and simple graph with edge weights. An
edge cover x∗ is called the expected minimum weight edge cover if

E [W (x∗, ξ)] ≤ E [W (x, ξ)] ,

for any edge cover x of G.

When wij = ξij are uncertain variables, model (1) is only a conceptual model rather
than a mathematical model because an uncertain objective function cannot be minimized
directly. As a first choice, we present the expected value programming model for MWECP
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to seek an optimal cover as follows:

min
x

E

 ∑
(vi,vj)∈E

ξijxij


subject to:∑

j:j<i

xji +
∑
j:j>i

xij ≥ 1, ∀ vi ∈ V∑
j:j<i

ηjixji +
∑
j:j>i

ηijxij ≥ ηj, ∀ vi ∈ V

xij ∈ {0, 1} , ∀ (vi, vj) ∈ E.

(2)

Theorem 3.1. Let G = (V, E) be an undirected and simple graph with edge weights, and
ξij be independent uncertain variables with uncertainty distributions Φij, i, j = 1, 2, . . . , n,
respectively. Then model (2) is equivalent to the following one

min
x

∑
(vi,vj)∈E

xij

∫ 1

0

Φ−1
ij (α)dα

subject to:∑
j:j<i

xji +
∑
j:j>i

xij ≥ 1, ∀ vi ∈ V∑
j:j<i

ηjixji +
∑
j:j>i

ηijxij ≥ ηj, ∀ vi ∈ V

xij ∈ {0, 1} , ∀ (vi, vj) ∈ E.

(3)

Proof: It follows from Theorem A.1 in the appendix that

E

 ∑
(vi,vj)∈E

ξijxij

 =
∑

(vi,vj)∈E

E [ξij] xij =
∑

(vi,vj)∈E

xij

∫ 1

0

Φ−1
ij (α)dα.

Therefore, the theorem is proven.

3.2. Chance-constrained programming model. Although the expected value model
is often adopted in real-life applications, it cannot be fully trusted in some cases. Charnes
and Cooper [1] initialized the chance-constrained programming which is a powerful tool to
deal with an indeterminacy system. The essential idea of chance-constrained programming
is to optimize some critical values with a given confidence level subject to some chance
constraints.

Given an α ∈ (0, 1), the decision maker hopes to get the smallest value W such that
uncertain variable W (x, ξ) is less than W with confidence level α, which causes appearance
of the following criterion.

Definition 3.2. Let G = (V, E) be an undirected and simple graph with edge weights. An
edge cover x∗ is called the α-minimum weight edge cover if

min
{
W | M

{
W (x∗, ξ) ≤ W

}
≥ α

}
≤ min

{
W | M

{
W (x, ξ) ≤ W

}
≥ α

}
,

for any edge cover x of G, where α is a predetermined confidence level.
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If the decision maker prefers treating the MWECP under the chance-constraints, the
model can be constructed as follows:

min
x

W

subject to:

M

 ∑
(vi,vj)∈E

ξijxij ≤ W

 ≥ α∑
j:j<i

xji +
∑
j:j>i

xij ≥ 1, ∀ vi ∈ V∑
j:j<i

ηjixji +
∑
j:j>i

ηijxij ≥ ηj, ∀ vi ∈ V

xij ∈ {0, 1} , ∀ (vi, vj) ∈ E.

(4)

Theorem 3.2. Let G = (V, E) be an undirected and simple graph with edge weights, and
ξij be independent uncertain variables with regular uncertainty distributions Φij, i, j =
1, 2, . . . , n, respectively. Then model (4) is equivalent to the following one

min
x

∑
(vi,vj)∈E

xijΦ
−1
ij (α)

subject to:∑
j:j<i

xji +
∑
j:j>i

xij ≥ 1, ∀ vi ∈ V∑
j:j<i

ηjixji +
∑
j:j>i

ηijxij ≥ ηj, ∀ vi ∈ V

xij ∈ {0, 1} , ∀ (vi, vj) ∈ E,

(5)

where Φ−1
ij is the inverse uncertainty distributions of ξij.

Proof: Since the total weight W is strictly increasing with respect to each edge weight,
and it is assumed that ξij have regular uncertainty distributions Φij, i, j = 1, 2, . . . , n,
respectively, then, using the inverse uncertainty distribution, we can transform the con-
straint

M

 ∑
(vi,vj)∈E

ξijxij ≤ W

 ≥ α

into a deterministic constraint ∑
(vi,vj)∈E

xijΦ
−1
ij (α) ≤ W.

Therefore, model (4) can be equivalently transformed into the following deterministic
model: 

min
x

W

subject to:∑
(vi,vj)∈E

xijΦ
−1
ij (α) ≤ W∑

j:j<i

xji +
∑
j:j>i

xij ≥ 1, ∀ vi ∈ V∑
j:j<i

ηjixji +
∑
j:j>i

ηijxij ≥ ηj, ∀ vi ∈ V

xij ∈ {0, 1} , ∀ (vi, vj) ∈ E.

(6)
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Clearly, model (6) is equivalent to model (5). The theorem is verified.
It is necessary to point out that models (3) and (5) are both 0-1 programming models.

With the aid of some optimization software packages, for example, LINGO, we can solve
the above optimization models effectively. Similar to the mainstream literature in the
area of uncertain optimization problem (Chen et al. [2], Chen et al. [3], and Yang et al.
[17]), we solve the proposed models by using LINGO software.

4. Numerical Examples. In this section, we give two numerical examples to show the
applications of the models. We usually encounter the uncertain factors in the real-life
application. In this case, we have no choice but to invite the domain experts to give the
subjective estimations. In the previous literature, the researchers assume the relevant
parameters as fuzzy variables, such as Ni [15]. However, the fuzzy set theory is unsuitable
to model the imprecise edge weight in the minimum weight edge covering problem with
vertex weight constraint when the relevant parameters are given by some domain experts.
Therefore, the edge weights are more suitable to be regarded as uncertain variables.
Consider the graph shown in Figure 1. Assume that all edge weights are linear uncertain
variables ξij. The uncertainty distributions of ξij are listed in Table 1.

j j2 5ξ12

ξ25

ξ23 ξ58j j j j1 3 6 8

ξ14
ξ67

ξ56
ξ36

j j4 7
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ξ34 ξ78
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Figure 1. Uncertain weighted graph G

Table 1. The distributions of weights ξij in Figure 1

ξij Φij ξij Φij

ξ12 L(2, 3) ξ47 L(5, 7)
ξ14 L(2, 3) ξ56 L(3, 7)
ξ23 L(2, 6) ξ58 L(2, 5)
ξ25 L(5, 8) ξ67 L(4, 6)
ξ34 L(2, 9) ξ78 L(2, 6)
ξ36 L(5, 7)

The expected value model (2) for the uncertain minimum weight edge covering problem
is formulated as follows:

min
x

E

[
8∑

i=1

8∑
j=1

xijξij

]
subject to:∑

j:j<i

xji +
∑
j:j>i

xij ≥ 1, i, j = 1, 2, . . . , 8∑
j:j<i

ηjixji +
∑
j:j>i

ηijxij ≥ ηj, i, j = 1, 2, . . . , 8

xij ∈ {0, 1} , i, j = 1, 2, . . . , 8.

(7)
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It follows from Theorem 3.1 that model (7) is equivalent to the following model:

min
x

8∑
i=1

8∑
j=1

xij

∫ 1

0

Φ−1
ij (α)dα

subject to:∑
j:j<i

xji +
∑
j:j>i

xij ≥ 1, i, j = 1, 2, . . . , 8∑
j:j<i

ηjixji +
∑
j:j>i

ηijxij ≥ ηj, i, j = 1, 2, . . . , 8

xij ∈ {0, 1} , i, j = 1, 2, . . . , 8.

(8)

By using the mathematical software LINGO, we can get the following optimal solution
of (8) as

(x12, x13, x14, x23, x25, x34, x36, x47, x56, x58, x67, x68, x78) = (1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1)T ,

that is to say, the expected minimum edge cover is {(1, 2), (3, 4), (5, 6), (7, 8)}. The mini-
mum weight edge cover is shown in Figure 2(a) (denoted by solid lines).

According to model (4), the 0.9-minimum weight edge covering problem can be formu-
lated as follows:

min
x

W

subject to:

M

{
8∑

i=1

8∑
j=1

ξijxij ≤ W

}
≥ 0.9∑

j:j<i

xji +
∑
j:j>i

xij ≥ 1, i, j = 1, 2, . . . , 8∑
j:j<i

ηjixji +
∑
j:j>i

ηijxij ≥ ηj, i, j = 1, 2, . . . , 8

xij ∈ {0, 1} , i, j = 1, 2, . . . , 8.

(9)

According to Theorem 3.2, model (9) is equivalent to the deterministic programming
model: 

min
x

8∑
i=1

8∑
j=1

xijΦ
−1
ij (0.9)

subject to:∑
j:j<i

xji +
∑
j:j>i

xij ≥ 1, i, j = 1, 2, . . . , 8∑
j:j<i

ηjixji +
∑
j:j>i

ηijxij ≥ ηj, i, j = 1, 2, . . . , 8

xij ∈ {0, 1} , i, j = 1, 2, . . . , 8.

(10)

By using the mathematical software LINGO, we can get the following optimal solution
of the (10) as x∗ = (1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1)T . The 0.95-minimum weight edge cover
is {(1, 2), (3, 4), (5, 8), (6, 7)}. The minimum weight edge cover is shown in Figure 2(b)
(denoted by solid lines).

5. Conclusions and Future Research. In this paper, we have investigated the min-
imum weight edge covering problem with vertex weight constraint under an uncertain
environment. With different criteria, two types of uncertain programming models were
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Figure 2. Uncertain minimum weight edge cover

constructed for the problem, including expected value model and chance-constrained pro-
gramming model. The proposed models were transformed into their corresponding deter-
ministic forms by taking advantage of some properties of the uncertainty theory. At last,
numerical experiments were presented to show the performance of the models.

It is worth saying that there are several other types of indeterminacy environment in
the real systems, such as random uncertain environment and uncertain random environ-
ment. This paper only researches the minimum weight edge covering problem with vertex
weight constraint under an uncertain environment, and the problem in other more com-
plex environment (Gao et al. [6], Gao and Yao [7]) may become new topics in our further
research.
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Appendix: Preliminaries on Uncertainty Theory. Let Γ be a nonempty set and L
a σ-algebra over Γ. For any Λ ∈ L, Liu [10] presented an axiomatic uncertain measure
M{Λ} to indicate the belief degree that uncertain event Λ occurs. The uncertain measure
M satisfies the following three axioms:
Axiom 1. (Normality Axiom) M{Γ} = 1 for the universal set Γ;
Axiom 2. (Duality Axiom) M{Λ} + M{Λc} = 1 for any event Λ ∈ L, where Λc is a
complement of Λ;
Axiom 3. (Subadditivity Axiom) For every countable sequence of events Λ1, Λ2, . . . ,
we have

M

{
∞∪
i=1

Λi

}
≤

∞∑
i=1

M{Λi}.

Definition A.1. (Liu [10]) An uncertain variable is a measurable function ξ from an
uncertainty space (Γ, L,M) to the set of real numbers, i.e., for any Borel set B of real
numbers, the set

{ξ ∈ B} = {γ ∈ Γ | ξ(γ) ∈ B}
is an event.

An uncertain variable ξ is called linear if it has a linear uncertainty distribution

Φ(x) =


0, if x ≤ a
x − a

b − a
, if a ≤ x ≤ b

1, if x ≥ b,

denoted by L(a, b), where a and b are real numbers with a < b.

Definition A.2. (Liu [10]) Let ξ be an uncertain variable. Then the expected value of ξ
is defined by

E[ξ] =

∫ +∞

0

M{ξ ≥ r}dr −
∫ 0

−∞
M{ξ ≤ r}dr

provided that at least one of the two integrals is finite.

Theorem A.1. (Liu [12]) Let ξ be an uncertain variable with regular uncertainty distri-
bution Φ. Then

E[ξ] =

∫ 1

0

Φ−1(α)dα.

It follows from Theorem A.1 that the expected value of the linear uncertain variable

ξ ∼ L(a, b) is E[ξ] =
a + b

2
.


