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Abstract. An efficient method of multiple carrier frequency offsets (MCFOs) and mul-
tiple channel responses (MCRs) estimation algorithm was proposed for distributed mul-
tiple input multiple output orthogonal frequency division multiplexing (MIMO-OFDM)
system, which utilizes the polynomial root finding method and the iterative interference
cancellation procedure. The scheme transforms the multi-dimensional frequency search-
ing function into multi one-dimensional searching functions by using the optimum train-
ing sequences, which is specially designed, and turns these one-dimensional functions
into closed-form estimators by Taylor series expanding. MCFOs are obtained by rooting
the polynomial and MCRs are obtained through solving the likelihood function. In order
to avoid the problem that the estimation performance is not accurate because the length
of pilot is short, the proposed algorithm utilizes the iterative interference cancellation
method to get more data to improve the performance. Simulation results show that the
proposed algorithm can achieve 1e−4 MCFOs estimation performance and 1e−3 MCRs
estimation performance when the normalized CFO is 0.1 and signal to noise (SNR) is
5dB.
Keywords: Distributed MIMO-OFDM, Multiple carrier frequency offsets, Multiple
channel responses, Polynomial rooting, Iterative inference cancellation

1. Introduction. The transmitting antennas are placed in distributed geographical lo-
cation, connected to the same signal processing center by fibers or cables; such multiple
input multiple output (MIMO) system is called distributed MIMO system [1]. Distributed
MIMO system can overcome the path loss caused by the “near far effect” and “shadow
effect”, and solve the problem of cell communication blind zone. Orthogonal frequency
division multiplexing (OFDM) technology has been successfully applied in the third gen-
eration wireless communication system, which is a key technology in the next genera-
tion wireless communication system. The combination of OFDM and distributed MIMO
system can improve the system capacity, the spectrum efficiency, and the reliability of
system. Different from the traditional MIMO-OFDM system, the receiving ends of dis-
tributed MIMO system receive the sum of different transmitting signals, multiple carrier
frequency offsets (MCFOs) and multiple channel responses (MCRs) that exist in the sys-
tem [2]. Therefore, compared with the traditional single CFO estimation problem, the
MCFOs and MCRs estimation problem seems more challenging.

Existing References [3-6] estimate MCFOs and MCRs by using the maximum likelihood
(ML) algorithm. However, ML algorithm needs to jointly optimize the multi-dimensional
likelihood function of MFCOs and MCRs, in which the algorithm complexity is increased
as the number of parameters increases. [7,8] utilizes the orthogonal pilots to simplify the
multi-dimensional likelihood function to multiple one-dimensional likelihood functions,
and analyzes the influence of pilots on the MCRs estimation performance. However, it
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still needs one-dimensional search on the carrier frequency offset (CFO) likelihood func-
tion. [9] introduces the Taylor series expansion to get the closed polynomial of CFO
likelihood function, and gets MCFOs by rooting the polynomial. [10] utilizes the impor-
tance sampling method to transform the integration part in CFO likelihood function to
the sum form, then gets MCFOs. However, the performance of [9,10] still needs to be
improved.

In this paper, a low complexity and high accuracy MCFOs and MCRs estimation
algorithm is proposed. This algorithm utilizes the orthogonal pilots to transform the
multi-dimensional likelihood function of MCFOs and MCRs to multiple one-dimensional
likelihood functions, then takes Taylor series expansion to transform the one-dimensional
likelihood function to the closed polynomial. MCFOs are obtained by rooting the polyno-
mial, and MCRs are obtained by solving the likelihood function. Also, iterative interfer-
ence cancellation method is used to get more data to improve the estimation performance.
In this paper, Section 2 gives the signal model of distributed MIMO-OFDM system, and
then Section 3 gives the proposed algorithm. Section 4 gives the complexity analysis.
Finally, Sections 5 and 6 are the simulation result and conclusion respectively.

2. Signal Model. Suppose there are Nt transmitting base stations (BSs) in the intercept
mode of distributed MIMO system, each BS transmits its own OFDM signal, and the
number of subcarriers is N . There are Nr receiving BSs, and each one has one receiving
antenna. The transmitted OFDM signal in frequency domain of the p-th BS is xp =

[xp(0), xp(1), . . . , xp(N − 1)]T, after inverse fast Fourier transform (IFFT) and adding the
cyclic prefix (CP), the receiving signal of the q-th receiving BS is,

yq(i) =
Nt∑
p=1

ej2πfq,pi/N

L−1∑
l=0

hq,p(l)xp(i − l − µq,p) + wq(i), i = 0, 1, . . . , N + Ncp − 1 (1)

where fq,p is the normalized CFO of the q-th receiving BS to the p-th transmitting BS
(normalized to the subcarrier space), hq,p(l) is the channel response (CR), L is the number
of multipath. µq,p is the integer timing error, and wq(i) is the complex additive Gaussian
white noise whose mean and variance are zero and σ2

w respectively. Let L and µq,p limit
in the same range, that is 0 < L + µq,p ≤ ∆, where ∆ is the maximum delay spread
of multipath channel. Because OFDM contains CP, it can be thought that time delay
estimation is contained in the CR estimation, the time delay estimation is not discussed
here, then 0 < L ≤ ∆. Inserting CP into OFDM to suppress the inter symbol interference
(ISI) which is caused by the multipath delay, the maximum delay spread should be smaller
than Ncp, that is ∆ < Ncp and L < Ncp. After getting rid of CP, (1) can be rewritten in
matrix form,

yq =
Nt∑
p=1

Cq,pXphq,p + wq = X̃qhq + wq (2)

where CFO vector is,

Cq,p = diag
(
ej2πfq,p·0/N , ej2πfq,p·1/N , . . . , ej2πfq,p·(N−1)/N

)
(3)

Signal matrix is,

Xp =


xp(0) xp(N − 1) · · · xp(N − L + 1)
xp(1) xp(0) · · · xp(N − L + 2)

...
...

. . .
...

xp(N − 1) xp(N − 2) · · · xp(N − L)

 (4)
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hq,p =[hq,p(0), hq,p(1), . . . , hq,p(L − 1)]T is CR vector, wq = [wq(0), wq(1), . . . , wq(N − 1)]T

is noise vector, and

X̃q = [Cq,1X1, Cq,2X2, . . . , Cq,NtXNt ]

hq =
[
hT

q,1,h
T
q,2, . . . , h

T
q,Nt

]T (5)

3. The Proposed Joint Estimation Algorithm of MCFOs and MCRs. ML algo-
rithms estimate MCFOs and MCRs by maximizing the joint likelihood function; if given
fq and hq, the conditional probability density function of yq is,

ln p (yq|fq,hq) = −N

2
ln(2πσ2

w) − 1

2σ2
w

[
yq − X̃qhq

]H [
yq − X̃qhq

]
= C0 − C1

[
yq − X̃qhq

]H [
yq − X̃qhq

] (6)

where C0 = −N
2

ln (2πσ2
w), C1 = 1

2σ2
w
, (·)H represents conjugate transpose. Suppose fq is

known, deviating (6) and setting the result zero, the ML estimator of hq is,

ĥq =
[
X̃H

q X̃q

]−1

X̃H
q yq (7)

And the ML estimator of fq is,

f̂q = arg max
fq

{
yH

q X̃q

[
X̃H

q X̃q

]−1

X̃H
q yq

}
(8)

It can be seen from (8) that, f̂q needs multi-dimensional search. As the antennas of trans-

mitting end and receiving end increase, the complexity of computing
[
X̃H

q X̃q

]−1

increases.

The proposed algorithm utilizes orthogonal pilots to transform multi-dimensional likeli-
hood function of MCFOs and MCRs to multiple one-dimensional likelihood functions. By

using the optimum pilot [7],
[
X̃H

q X̃q

]−1

can be turned into real value diagonal matrix,

that is
[
X̃H

q X̃q

]−1

≈ NI, where I is unit matrix, then (8) can be rewritten as,

yH
q X̃q

[
X̃H

q X̃q

]−1

X̃H
q yq = yH

q X̃qX̃
H
q yq

=
Nt∑
p=1

Nr∑
q=1

yH
q Cq,pX̃qX̃

H
q CH

q,pyq

=
Nt∑
p=1

Nr∑
q=1

Q−1
p

∣∣∣∣N−1∑
i=0

yq(i)x
∗
p(i)e

−j2πifq,p/N

∣∣∣∣2
(9)

where Qp represents each BS’s power. From (9), it can be seen that, Nt dimensional
likelihood function is transformed into Nt one-dimensional likelihood functions, and each
item in summation can be solved by FFT. However, it still needs searching processes on
the frequency domain, and the estimation precision is influenced by frequency resolution
and search scope. In order to achieve high estimation precision, large data and high
signal-to-noise ratio (SNR) are needed. To solve the above problems, a kind of estimation
algorithm without searching is given below.

3.1. The MCFOs estimation algorithm of rooting the polynomial. The proposed
algorithm takes Taylor series expansion of Cq,p in the p-th BS [9],

Cq,p =
∞∑

m=0

∂m (Cq,p)

∂(fq,p)m

∣∣∣∣∣
fq,p=fq,p,0

· (fq,p − fq,p,0)
m

m!
=

∞∑
m=0

Λm(fq,p,0) ·
(fq,p − fq,p,0)

m

m!
(10)
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Λm(fq,p,0) =

(
j
2π

N

)m

· diag [0m, 1, . . . , (N − 1)m]

⊙diag
(
ej2πfq,p,0·0/N , ej2πfq,p,0·1/N , . . . , ej2πfq,p,0·(N−1)/N

) (11)

where ⊙ represents multiplication of corresponding elements of matrixes. Let the p-th
function related to CFO be J(fq,p),

J(fq,p) =
Nr∑
q=1

yH
q Cq,pX̃qX̃

H
q CH

q,pyq

=
M ′∑

m=0

a
(p)
m (fq,p − fq,p,0)

m +
∞∑

m=M ′+1

a
(p)
m (fq,p − fq,p,0)

m

(12)

where the first term on the right side of (12) is the valid term JPRS(fq,p), which approxi-
mates the CFO function as much as possible, the second item is the remainder term. M ′

represents the order of JPRS(fq,p), a
(p)
m is the coefficient of polynomial. Taking the first

derivative of JPRS(fq,p), and setting the result zero, it has

∂JPRS(fq,p)

∂fq,p

=
M ′−1∑
m=0

(fq,p − fq,p,0)
mc(p)

m = 0 (13)

where c
(p)
m = (m + 1)a

(p)
m+1, and

c(p)
m =

1

m!

m+1∑
i=1

(
m + 1

i

)
R

{
Nr∑
q=1

yH
q Λi(fq,p,0)X̃p

(
X̃p

)H

(Λm+1−i(fq,p,0))
Hyq

}
(14)

Let ξq,p be the real value root of (14) when ∂2JPRS(fq,p)

∂f2
q,p

∣∣∣
fq,p=ξq,p

< 0, MCOs can be got by

rooting the M ′ − 1 order polynomial, then the CFO of the p-th BS is,

f̂q,p = fq,p,0 + ξq,p, p = 1, 2, . . . , Nt (15)

Taking f̂q,p into Cq,p, it has,

Ĉq,p =
M ′−1∑
m=0

Λm(fq,p,0) ·

(
f̂q,p − f̂q,p,0

)m

m!
(16)

From (7), CRs are

ĥq = X̂H
q yq (17)

3.2. The iterative interference cancellation algorithm. Although the training se-
quence described before can be used to cancel the interferences between signals, as a
result of short training sequences, the data used to estimate MCFOs and MCRs are little,
estimation error is large. If the data are increased, the estimation performance can be im-
proved. The iterative interference cancellation algorithm is taken to get more data. The
proposed algorithm takes the estimated value of MCFOs and MCRs as known parameters,
then cancels other antennas’ interferences from the receiving signals, and estimates the
determined antenna’s parameters. Suppose f̂q,p and ĥp have been got, and MCFOs are
included into MCRs and signals, (1) can be rewritten as,

yq(i) =
Nt∑
p=1

Lp−1∑
l=0

h̃q,p(l)x̃p(i − l) + wq(i), i = 0, 1, . . . , N − 1 (18)

where h̃q,p(l) = ej2πf̂q,pl/N ĥq,p(l), x̃p(i) = ej2πf̂q,pi/Nxp(i). Transforming (18) into matrix
form,

yq = H̃qx̃ + wq (19)
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where

yq = [yq(0), yq(1), . . . , yq(N − 1)]T

h̃q(l) =
[
h̃q,1(l), h̃q,2(l), . . . , h̃q,Nt(l)

]
wq = [wq(0), wq(1), . . . , wq(N − 1)]T

x̃ = [x̃1(−(L − 1)), . . . , x̃Nt(−(L − 1)), . . . , x̃1(N − 1), . . . , x̃Nt(N − 1)]T

(20)

H̃q =


h̃q(L − 1) · · · h̃q(0)

h̃q(L − 1) · · · h̃q(0)

. . .
. . .

h̃q (L − 1) · · · h̃q(0)

 (21)

Using least square (LS) algorithm to equalize (19),

ˆ̃x =

(
ˆ̃H

†

q
ˆ̃Hq

)−1
ˆ̃H

†

qyq (22)

where (·)† means conjugate transpose. Utilizing (22), (2) and the p-th signal’s estimated
CFO and CR, the p-th signal’s non-training sequence is,

ŷk
q,p = Ĉk

q,p
ˆ̃x

k

pĥ
k
q,p, 1 ≤ p ≤ Nt (23)

where

Ĉk
q,p = diag

(
ej2πf̂q,p·0/N , ej2πf̂q,p·1/N , . . . , ej2πf̂q,p·(N−1)/N

)
,

ˆ̃x
k

p =
[
ˆ̃xp(−(L − 1)), . . . , ˆ̃xp(N − 1)

]T

,

k means the k-th iterative. In order to reduce the interference between signals, subtract
other signals from receiving signals,

ỹk
q,p = yq −

Nt∑
m=1,m̸=p

Ĉk
q,m

ˆ̃x
k

mĥk
q,m (24)

ỹk
q,p is the p-th non-training sequence, then the new CFO f̂k+1

q,p and CR ĥk+1
q,p =

ˆ̃x
H

p Ĉ
(k+1)H
q,p ỹk

q,p

/
N can be obtained by using the proposed estimation algorithm. Repeat

above steps, MCFOs and MCRs of all receiving antennas can be got. Taking the obtained
parameters into (23) to equalize the receiving signals, then more non-training sequences
and their MCFOs and MCRs can be obtained. The above algorithm can increase the
length of data and improve the estimation performance.

4. Complexity Analysis. First, the complexity of ML algorithm is given. From (8), it

can be seen that, yH
q X̃qX̃

H
q yq can be got by calculating Ψ = X̃H

q yq and ΨHΨ . Because

X̃q = [Cq,1X1,Cq,2X2, . . . , Cq,NtXNt ], and Cq,p is a diagonal matrix, the complexity of
Cq,pXp is N , the complexity of Ψ is O(NtN) and ΨHΨ is O(NtN). A searching process

of the maximum value is needed on f̂q = arg max
fq

{
yH

q X̃q

[
X̃H

q X̃q

]−1

X̃H
q yq

}
, thus a

search step needs to be set. Suppose the frequency resolution is fsearch, then the overall
complexity of the ML algorithm is O(NtNfsearch).

In the proposed algorithm, the polynomial coefficient c
(p)
m occupies most of computation.

From (14), it can be got that the complexity of Λi(fq,p,0) is N , then the complexity of

R

{
Nr∑
q=1

yH
q Λi(fq,p,0)X̃p(X̃p)

H (Λm−i(fq,p,0))
H

yq

}
is O(NrN), c

(p)
m is O(M ′NrN). Compared

with the ML algorithm, the proposed algorithm has lower complexity.
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5. Simulation Results and Analysis. In order to verify the correction of the theoreti-
cal analysis and the accuracy of the algorithm, this paper will conduct three experiments,
and simulation experiments are all carried out under the MATLAB environment. The
number of transmitting BS Nt is 2, each BS transmits its own OFDM signal, and the
inner modulation is QPSK. Taking one OFDM symbol for example, the signal length is
N , the length of CP is N/4. The path number of multipath channel L is 9, channel
coefficients are random Gauss variables of zero mean and unit variance. The channel is
tapped delay line model with Rayleigh fading coefficients and power delay distribution,
the typical model is IEEE 802.11a [9]. The normalized CFO is 0.1 and −0.1. The pilots
are T1 = Z, T2 = Z ⟨D2⟩, the prime M in pilot is 3, the length of cyclic shift D2 is
43. SNR is [0, 25]dB, and the Monte Carlo simulation number is 100. Use average mean
square error (AMSE) as the evaluation standard.

Experiment 1. Considering MCFOs and MCRs estimation performance under different
SNRs and N between the proposed algorithm and Reference [9]. N is 128, 256, 512, 1024
respectively, and the number of receiving antennas Nr is 3. Reference [9] is based on
polynomial algorithm without optimum pilots and iterative interference cancellation.

0 5 10 15 20 25
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

A
M
S
E

 

 

SNR(dB)

the proposed algorithm,N=128
the proposed algorithm,N=512
the proposed algorithm,N=1024
the proposed algorithm,N=256
the reference algorithm,N=128
the reference algorithm,N=256
the reference algorithm,N=512
the reference algorithm,N=1024

Figure 1. The performance
of MCFOs estimation
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Figure 2. The performance
of MCRs estimation

From Figure 1 and Figure 2, it can be seen that, as N increases, the performances
of MCFOs and MCRs of the proposed algorithm and reference are both improved, and
the performance of the proposed algorithm is better than that of the reference. When N
increases to some value, like 1024, the improvement of the performance is not obvious.
Considering the performance and the complexity of algorithms, N is chosen as 512.

Experiment 2. Considering MCFOs and MCRs estimation performance under different
SNRs and Nr of the proposed algorithm and Reference [5]. N is 512, Nr is 2, 3, 5
respectively. Add asymptotic CRB (asCRB) [5] as the comparison standard.

From Figure 3 and Figure 4, it can be seen that as Nr increases, the performance of
MCFOs and MCRs estimation are both improved, and can reach asCRB, which means the
increasement of Nr can enhance the diversity effect, and plays a certain role in improving
the performance. The proposed algorithm can achieve 1e−4 CFO performance and 1e−3
channel responses performance when SNR is 5dB.

Experiment 3. Considering the effect of M ′ on MCFOs estimation performance of the
proposed algorithm when the normalized CFOs are 0.1, −0.1, 0.3, −0.3 respectively. M ′

is 2, 3, 4, 5. When M ′ is 5, decompose it into M1 = 3, M2 = 2 to avoid the uncertainty
of rooting the polynomial. Nr is 3, and N is 512.



ICIC EXPRESS LETTERS, VOL.11, NO.6, 2017 1113

0 5 10 15 20 25
10

−6

10
−5

10
−4

10
−3

10
−2

SNR(dB)

A
M

S
E

 

 

the proposed algorithm,Nr=2
the proposed algorithm,Nr=3
the proposed algorithm,Nr=5
reference algorithm,Nr=2
reference algorithm,Nr=3
reference algorithm,Nr=5
asCRB

Figure 3. The performance
of MCFOs estimation
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Figure 4. The performance
of MCRs estimation
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(a) The normalized CFOs are 0.1, −0.1.
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(b) The normalized CFOs are 0.3, −0.3.

Figure 5. The effect of M ′ for MCFOs estimation performance

When the normalized CFOs are 0.1 and −0.1, M ′ is 2, the performance of MCFOs
estimation is good. When the normalized CFOs are 0.3 and −0.3, M ′ is 2 and 3, the
performance is poor. When CFOs are large, and M ′ is 4 and 5, the performance became
good. The simulation result explores that, when the normalized CFOs are larger, small
polynomial order cannot be used to approximate the CFO function, larger polynomial
order is needed.

6. Conclusion. Existing joint MCFOs and MCRs estimation algorithms based on pilots
have a problem that the complexity of algorithms is high. To solve this, a kind of algorithm
based on Taylor series expansion and polynomial rooting is proposed in this paper. This
algorithm introduced the pilots to transform the multi-dimensional joint MCFOs and
MCRs likelihood function into multi one-dimensional likelihood functions. Then Taylor
series expansion is proposed to simplify the one-dimensional CFO search function, and
CFO is obtained by rooting the polynomial, CR is got by solving the one-dimensional
likelihood function. In order to avoid the poor performance because of short pilots, this
algorithm utilizes the LS algorithm and iterative interference cancellation to equalize the
transmitting data, the length of data is increased, and the performances of MCFOs and
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MCRs estimation are improved. Simulation results show that, compared with existing
algorithms, the proposed algorithm has better performance.
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