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Abstract. Regression analysis is a classic prediction method. Determining the regres-
sion equation with the minimum sum of all the sample deviations is a core of regression
analysis. The classical regression model is based on the assumption that residual error
is normal distribution. However, real error term structure is complex and does not obey
the normal distribution. Although the assumption of residual error has nothing to do
with the least square method, it is very important to the statistical inference and test.
It means that the classical test method cannot verify the regression equation without fol-
lowing the assumption. In the paper, we firstly analyze the characteristics of classical
regression test models, and put forward the volatility value reflecting the distance between
two regression equations. Secondly we analyze the volatility value and build the volatility
statistic. Thirdly we analyze the characteristics of the volatility statistic, then we estab-
lish a regression test model based on the volatility statistics (denoted by VR-TM), and
further analyze the characteristics of VR-TM from theory and application. The results
show that VR-TM not only has good structure characteristics and interpretability, but
also extends and perfects the existing regression test methods.
Keywords: Regression analysis, The volatility statistic, Test method, Reliability

1. Introduction. Regression analysis, as one of the three branches of statistics, helps
people to study the dependent relationship between the reason variables and result ones.
Regression analysis has been applied successfully in many management and prediction
problems. For example, [1] built a sensor-based forecasting model using Support Vector
Regression and applied it to an empirical data-set from a multi-family residential building
in New York City. For the problem that support vector regression has deficiency to solve
the problem that electric load forecasting appears highly nonlinear characteristics, [2]
proposed a multidimensional regression model based on support vector to generate color
scales which provided a tool to distinguish the stage of phenolic ahead of the autumn
harvest. [3] established a fuzzy linear regression model based on the influence of sen-
sory evaluation to fried doughnuts sales. [4] presented a regression model about nitrogen
dioxide concentration and local wind direction, and then predicted the nitrogen dioxide
concentration precisely in future. [5] built an hourly cooling load forecasting regression
model based on time index. [6] applied Gaussian Process Regression (GPR) to probabilis-
tic stream flow forecasting. People in the study found that the new forecasting method
and model constantly perfect the existing model. [7] presented the least squares regression
is based on some basic assumptions; any deviation hypothetical situation will affect the re-
gression results. The article discussed the main problems in regression analysis deviating
from the basic assumption which may affect the results of regression analysis and give the
corresponding ways to find and remedy problems. [8] built a regression model based on
the quasi linear function (QRM), and discussed the parameter estimation of QRM strate-
gies; this paper give the parameters estimation method based on the genetic algorithm
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and the least squares estimation method, and the error test method based on the residual.
[9] established a high dimensional nonlinear regression model to the physical combustion
model and the main variables are selected by the principal component analysis method.
[10] proposed an improved auto correlation kernel regression method, which can provide
early prediction of industrial parts. [11] extended some fuzzy linear regression methods
to polynomial form which are applied to financial problems. [12] improved the frequency
domain regression model to calculate the coefficient of the multilayer structure of the
conduction transfer function. [13] developed novel structural break tests to distinguish
breaks in intercept from slope parameters in linear regression models and to significantly
improve the power of these tests, the process from which they are derived is weighted and
exploits higher moments of the residual process.

From the above analysis, we know that regression analysis is widely used in practice.
The premise of the regression analysis application is through the tests. Current regres-
sion test models are mostly established on the basis of the error term obeying normal
distribution, while a lot of sample sets are hard to adjust to obey the assumption. So it is
necessary to put forward a testing method whose application is wider. We mainly do the
work as follows. 1) We introduce the classic regression analysis and common test models.
2) We construct the volatility statistic, and then establish the VR-TM based on the law
of large numbers. The VR-TM can test the regression functions whether its residual error
obeys the classical regression model hypothesis or not. 3) Using a concrete case, we show
the application value of VR-TM.

2. Main Test Models of Regression Function. Regression analysis is a method to
study the correlation between variables. Its core content is to determine the relationship
between variables in the sense of average. And the basic form is:

y = µ(x) + ε(x). (1)

Here, x denotes explanatory variable, y denotes explained variable, µ(x) (called regres-
sion function , and it denotes the mathematical expectation of y(x) intuitively) is the
deterministic relationship of x, and ε(x) is the error term.

Current regression analysis theories are mostly established on the basis of ε(x) obeying
normal distribution N(0, σ2). So after estimating the µ(x), we should verify the reliability
on the basis of ε(x) obeying N(0, σ2). There are two common types of method to verify the
reliability of regression function. One is to verify the confidence interval of the regression
function to predict under a certain confidence level. The other is to verify the fitting
degree, for example:

1) F-test: Let SR =
∑

(ŷi − ȳ)2 and SR =
∑

(yi − ŷi)
2, and then F = SR

Se/(n−2)
.

2) R-test: Let lxy =
∑

(xi − x̄)(yi − ȳ) and lxxlyy =
∑

(xi − x̄)2
∑

(yi − ȳ)2, and then

R = lxy/
√

lxxlyy. Here, ŷi denotes the predicted value of xi by the regression function, ȳ
denotes the mean value of the yi and x̄ denotes the mean value of the xi.

Current regression test models are mostly established on the basis of ε(x) obeying nor-
mal distribution N(0, σ2). However, the error term does not obey the normal distribution
in many cases. It greatly limits the application of the regression analysis. We always can
obtain the regression function by the OLS, whether error term obeys the normal distri-
bution or not. In the case that the error term does not obey the normal distribution, the
R-test can verify the fitting degree (F-test no longer applies), while the models to verify
the confidence interval of the regression function lose efficacy. The above analysis shows
that the existing regression test methods need improving further. In the following, we
will focus on the shortcomings of current regression test method and discuss the VR-TM.
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3. The Volatility Statistic. In this section, surrounding the reliability measurement
of the regression function, we will discuss the construction strategy of the wave statistic.
For convenience, we assume that: 1) Ω = {(xi, yi)|i = 1, 2, . . . , n} denotes the sample
data set. Here, (xi, yi) denotes the observed values of explanatory variables and explained
variables. 2) Ωk denotes the proper subset of Ω. 3) ŷ(x, Ω) (called parent function)
and ŷ(x, Ωk) (called sub-function) are corresponding short for the regression function
based on the data set Ω and Ωk.

It is easy to see, ŷ(x, Ω) has the exact meaning, and ŷ(x, Ωk) has the same meaning
with ŷ(x, Ω) to a certain degree. For the sample data set Ω = {(xi, yi)|i = 1, 2, . . . , n},
we randomly take some elements from Ω, and then repeat m times. Every time the
elements taken are denoted by Ωk (k = 1, 2, . . . , m) and there are enough elements in
Ωk (k = 1, 2, . . . ,m). If Ω has a layered phenomenon or the managers classify Ω with
an important feature, in each type of classes, the elements inside should be taken by
the same opportunity. So we can understand Ωk (k = 1, 2, . . . , m) as a cover of Ω and
{ŷ(x, Ωk)|k = 1, 2, . . . ,m} are the basic factors reflecting the local feature of ŷ(x, Ω). Then
the reliability of ŷ(x, Ω) can be reflected by the distance between the parent function and
the sub-functions.

The distance between different regression functions based on limited sample data sets
can be measured by the average distance from the parent function to the sub-functions
based on all variables, that is:

Dk =
1

n

n∑
i=1

|ŷ(xi, Ω) − ŷ(xi, Ωk)| (2)

is called the volatility value. By the definition of Dk, we know that Dk denotes the
volatility value between ŷ(x, Ω) and ŷ(x, Ωk). Because of the randomness of selection,
we can know that {Dk|k = 1, 2, . . . , m} is an independent and identically distributed
sequence. Based on the above analysis, we can build the statistic D̄ (called the volatility
statistic):

D̄ =
1

m

m∑
k=1

Dk. (3)

Combined with the definition of Dk, we know that D̄ shows the mean distance between
the parent function and the sub-functions. Let us take an extreme example, D̄ = 0 if
and only if the relation between variables is certain. So, if the regression function based
on the data set Ω is a certain curve, then its sub-functions are the same as the parent
function. In such case D1 = D2 = · · · = Dm, then D̄ = 0.

4. Volatility-Based Reliability Test Model.

4.1. The characteristic analysis of the volatility statistic and the construction
of VR-TM. In this section we will further discuss the value rule of the volatility statis-
tic from the angle of quantification. To help us understand the volatility statistic, we
introduce the theorems of [14].

Theorem 4.1. Let {φn(t)} denote the characteristic function sequence of distribution
function sequence {Fn(x)}, and φ(t) denote the characteristic function of distribution
function F (x). Then {Fn(x)} weak converges to F (x), if and only if {φn(t)} converges to
φ(t).

Theorem 4.2. Let {Dm} be independent and identically distributed sequence with the

mean value µ and the variance σ2, Ym = D̄−µ
σ/

√
m

. Then for any real number s,

lim
m→+∞

P (Ym ≤ s) =
1√
2π

∫ s

−∞
e

−t2

2 dt , Φ(s).
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Proof: Let φ(t) be the characteristic function of Dm − µ. And we know that the
characteristic function of Dm − µ is the same as Dm. Then by D̄ = 1

m

∑m
k=1 Dk, we

know the characteristic function of Ym is φYm(t) =
[
φ

(
t

σ
√

m

)]m

. If we assume that

φ′(t) denotes the first derivative function of φ(t) and φ′′(t) denotes the second derivative
function of φ(t), and then using E(Dm−µ) = 0 and V ar(Dm−µ) = σ2, we have φ′(0) = 0,
φ′′(0) = −σ2, and

φ(t) = φ(0) + φ′(0) + φ′′(0)
t2

2
+ o

(
t2

)
= 1 − 1

2
σ2t2 + o

(
t2

)
.

Taking m → ∞ on the characteristic function φYm(t), we can obtain

lim
m→∞

φYm(t) = lim
m→∞

[
1 − t2

2m
+ o

(
t2

m

)]m

= e−t2/2. (4)

e−t2/2 is the characteristic function of the standard normal distribution N(0, 1). According
to Theorem 4.1, we know Theorem 4.2 holds.

According to Theorem 4.2, we know the following: 1) D̄ weak converges to N(µ, σ2/m).
This implies that the smaller µ is, the more reliable the parent function is; the smaller
σ is, the more stable the parent function is. For example, according to the 3σ principle
of the normal distribution N(µ, σ2), we know that the percentage of values from normal
distribution is 68.26% in (µ − σ, µ + σ), 95.45% in (µ − 2σ, µ + 2σ) and 99.73% in (µ −
3σ, µ + 3σ). The length of the interval represents the reliability of the prediction. 2) If m
is big enough, then the distribution of D̄ is N(µ, σ2/m). According to the above analysis,
when the deviation standard of the parent function is δ, then the following formula can
measure the percentage:

P
(
0 ≤ D̄ ≤ δ

)
≈ Φ

(
δ − µ

σ/
√

m

)
+ Φ

(
µ

σ/
√

m

)
− 1 , β. (5)

So, [δ, β] can be used to describe the regression function in qualitative. Obviously, 1)
the intuitive meaning of [δ, β] is that the probability β of average deviation between the
parent function and the sub-function is less than δ. It also means the probability that
the predicted value ŷ falls in [ŷ − δ, ŷ + δ] is β. For example, let the [δ, β] of a regression
function be [0.5, 0.9]. That means that the predicted deviation of the regression function
is less than 0.5 with probability 0.9. 2) When β is certain, the smaller δ is, the higher
reliability of the regression equation is. When δ is in a certain range, the bigger β is,
the higher reliability of the regression equation is. In practice, δ dose not exceed 10%
of the predicted value and β should be greater than 90%. For µ and σ are unknown
in Formula (5), we can use the sample mean and the sample standard deviation as the
estimations to compute. Then, for any regression function, we can get a quantitative
description about the reliability by Formula (5). For convenience Formula (5) is called
the volatility-reliability test model (shorthand for VR-TM).

4.2. The application of VR-TM in the regression model conforming to the
assumptions. In the zoology, sometimes people need to know the relationship between
the volume and weight of animals. It is relatively easy to measure the weight of the animal
to the volume. So people want to predict the volume by the weight of animals. There are
18 samples data in Table 1 about the volume and the weight of some animals. xi denotes
the weight of the animal and the unit of xi is kg; yi denotes the volume of the animal and
the unit of yi is dm3.

The specific steps are stated as follows.
Step 1 Get the parent function of the 18 sample data by the least square method:

ŷ = 0.988x − 0.105.
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Table 1. The sample data about the weight xi and volume yi of the animals

xi 10.4 10.5 11.9 12.1 13.8 15.0 15.1 15.1 15.1
yi 10.2 10.4 11.6 11.9 13.5 14.5 14.8 15.1 14.5
xi 15.7 15.8 16.0 16.5 16.7 17.1 17.1 17.8 18.4
yi 15.7 15.2 15.8 15.9 16.6 16.7 16.7 17.6 18.3

Table 2. The 30 sub-functions

y = 0.991x − 0.136 y = 0.943x + 0.460 y = 1.002x − 0.351 y = 0.945x + 0.371 y = 0.990x − 0.153
y = 0.995x − 0.150 y = 0.937x + 0.553 y = 0.999x − 0.264 y = 0.917x + 0.036 y = 0.990x − 0.121
y = 0.980x − 0.035 y = 0.989x − 0.089 y = 1.000x − 0.206 y = 0.976x + 0.056 y = 0.984x − 0.099
y = 0.999x − 0.134 y = 0.968x + 0.186 y = 0.955x + 0.280 y = 0.986x − 0.075 y = 0.981x + 0.008
y = 0.988x − 0.023 y = 0.974x + 0.081 y = 0.978x − 0.031 y = 0.970x + 0.114 y = 0.998x − 0.242
y = 1.003x − 0.334 y = 0.983x − 0.060 y = 0.998x − 0.144 y = 0.983x − 0.078 y = 1.006x − 0.404

Table 3. The 30 volatility values

0.013 0.137 0.038 0.176 0.019 0.059 0.146 0.022 0.325 0.013
0.013 0.081 0.037 0.077 0.059 0.024 0.027 0.031 0.110 0.049
0.051 0.030 0.078 0.031 0.055 0.135 0.041 0.120 0.004 0.037

Step 2 Select randomly 12 data from the Table 1, and then get the regression function
of the 12 sample data. Repeat it 30 times. The 30 sub-functions are shown in Table 2.

Step 3 Calculate the volatility values of the 30 sub-functions by Formula (2). The
volatility values are shown in Table 3.

Step 4 Calculate the mean value µ̄ and the variance σ̂2 of the 30 volatility values:
µ̄ = 0.068 and σ̂2 = 0.004.

Step 5 If the weight of one animal is 17.6kg, then the estimated volume of this an-
imal is 17.284dm3 according to the parent function: ŷ = 0.988x − 0.105. When the
percentage about the reliability of the estimated volume is 95%, the prediction interval is
(16.808, 17.763). The length of the prediction interval is 0.955. So the reliability of this
regression function is high, and we can rely on the predictive results.

Step 6 Calculate the probability by Formula (5). Ym denotes the deviation from the
actual value to estimated values including positive deviation and minus deviation. So
δ = 0.955/2 = 0.478. If δ = 0.478, then P (0 ≤ D̄ ≤ δ) ≈ 0.918. If we want to know the
interval with the confidence level 95%, we do it like the following: δ1 denotes the actual

deviation of the estimated value. When P (0 ≤ D̄ ≤ δ1) = 1√
2πσ/

√
m

∫ δ1
0

e
−(t−µ)2

2(σ2/m)dt = 0.95,

then δ1 = 0.418. Form the above, if the weight of the animal is 17.6kg, then the interval
of the real volume with the confidence level 95% is [16.866, 17.702]. So the reliability of
this regression function is high, and we can rely on the predictive results.

The main contribution of the regression function is prediction. From the above anal-
ysis, if the function conforms to the classical assumptions, the interval under a certain
confidence level by VR-TM is basically the same as that got by the classical test method.
So the VR-TM is feasible. Since VR-TM can not only apply to the standard regression
functions but also those regression functions whose error terms do not obey the classical
assumptions, VR-TM is the promotion of classical test model.

5. Application Example. In Section 4.2, we introduce the implementation strategy of
the VR-TM simply by a regression model in line with the assumption. In this section,
we will combine a concrete case to show the special thing about the VR-TM compared
with the current test models. The speciality is that VR-TM is not though adjusting
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the error term to obey the assumption to test the regression functions without obeying
the assumption. The case whose sample set does not obey the assumption, is different
from the case in Section 4.2. And we also can combine with this concrete case to further
illustrate the effectiveness and the specific implementation process of VR-TM.

Case description: The purpose of investors to create the company is profitable.
For the established companies, they have a variety of objectives: improve treatment
of workers, improve working conditions, expand market share, improve product quality,
reduce environmental pollution and so on, but the basis is profit. The goal of shareholders’
capital to enterprises is to maximize the wealth of shareholders. Rate of return on common
stockholders’ equity (shorted for ROE) is an important indicator to measure earnings.
ROE reflects the relation of net profit and owner’s equities. Net sales divided by total
assets is called total asset turnover. It is a basic driving force of ROE.

How to develop the total assets turnover to achieve the aim of shareholders’ ROE is
important in academics and applications. A new type of enterprise plans to increase
shareholders’ wealth by a a period of operation plan. The key of plan is to find the
relationship between ROE and total asset turnover based on the records of 90 from the
similar established companies. The 90 samples data are shown in Table 4. Here, xi

denotes the total asset turnover; yi denotes the ROE. This shows that the correlation of
the total asset turnover and the ROE can be summarized as a regression problem based
on data sample {(xi, yi)|i = 1, 2, . . . , n}. We will use VR-TM to verify the reliability of
the regression function of the total asset turnover and ROE. The specific process is stated
as follows.

Step 1 Take the first 82 data in Table 4 as the regression set Ω, the last 8 as the test
sample data.

Step 2 Calculate the parent function based on Ω. ŷ(x, Ω) denotes the parent function.
ŷ(x, Ω) is shown in Table 5.

Step 3 The scatter plot of Ω is shown in Figure 1. Obviously, stratification phenomenon
shows in Figure 1. So the sample data set is not homogeneous. It means that the sample
data set does not obey the classical assumptions. Divide Ω into two sub-samples: Ω1 and
Ω2, according to the difference value between the real value and the predicted value by the
corresponding parent function. The elements in Ω1 are those whose real value is greater
than or equal to the predicted value by the parent function. The elements in Ω1 are on or
up the curve of the parent function. Then the remaining samples are in Ω2. The elements
of Ω1 and Ω2 are shown in Table 6 and Table 7. Select randomly 38 data from Ω1 and 22
data from Ω2. Ωλ1 denotes the set of the selected 60 data. If we repeat it 71 times, then we

Table 4. The total assert turnover xi and the ROE yi(%)

xi yi xi yi xi yi xi yi xi yi xi yi xi yi xi yi

1.05 10.1 5.00 46.9 2.20 23.6 3.00 37.0 2.80 35.6 2.60 34.3 1.50 22.0 4.20 43.3
1.10 10.4 5.10 47.9 2.40 25.1 3.10 37.7 4.30 43.9 1.70 25.3 1.85 20.4 1.10 17.5
1.25 11.6 5.20 48.1 2.45 25.8 3.20 37.9 4.40 44.4 1.90 27.9 1.30 18.9 1.65 18.7
1.00 10.2 5.30 47.9 2.65 27.0 3.30 39.1 4.50 45.1 2.00 28.0 1.70 19.4 1.60 17.9
1.15 11.5 5.40 48.3 2.80 28.3 3.40 39.7 4.60 45.4 2.10 29.6 1.80 20.0 6.10 53.0
1.30 12.2 5.50 48.7 3.10 30.6 3.50 40.3 4.70 46.2 2.20 29.7 1.40 21.5 1.20 17.7
1.35 13.2 5.60 49.1 3.25 31.7 3.60 40.4 4.80 46.7 2.40 32.5 1.60 24.3 4.10 43.0
1.40 16.2 5.70 49.5 3.40 32.9 3.70 41.3 4.90 46.8 2.50 32.6 2.15 23.4 2.90 35.9
1.45 13.4 5.80 50.7 3.65 34.2 3.80 41.5 1.90 20.9 1.80 25.4 2.10 22.6 2.70 33.9
1.50 14.6 5.90 51.2 3.75 35.2 3.90 41.7 2.05 22.0 2.30 30.1 1.55 17.6 6.00 52.1
1.00 15.2 4.00 42.7 – – – – – – – – – – – –



ICIC EXPRESS LETTERS, VOL.11, NO.6, 2017 1149

Table 5. The parent function and the sub-functions

ŷ(x,Ω) y = 23.275 lnx + 9.203 ŷ(x,Ωλ1) y = 24.916 ln x + 6.492 ŷ(x,Ωλ2) y = 24.067 lnx + 7.237
ŷ(x,Ωλ3) y = 24.828 lnx + 6.395 ŷ(x,Ωλ4) y = 24.771 ln x + 6.526 ŷ(x,Ωλ5) y = 24.556 lnx + 6.827
ŷ(x,Ωλ6) y = 25.008 lnx + 6.826 ŷ(x,Ωλ7) y = 26.181 ln x + 5.161 ŷ(x,Ωλ8) y = 24.968 lnx + 6.500
ŷ(x,Ωλ9) y = 25.222 lnx + 6.219 ŷ(x,Ωλ10) y = 24.477 ln x + 6.639 ŷ(x,Ωλ11) y = 24.239 lnx + 7.457
ŷ(x,Ωλ12) y = 24.960 lnx + 6.569 ŷ(x,Ωλ13) y = 24.848 ln x + 6.649 ŷ(x,Ωλ14) y = 24.815 lnx + 6.378
ŷ(x,Ωλ15) y = 24.434 lnx + 1.394 ŷ(x,Ωλ16) y = 24.376 ln x + 7.335 ŷ(x,Ωλ17) y = 25.852 lnx + 5.691
ŷ(x,Ωλ18) y = 25.587 lnx + 5.411 ŷ(x,Ωλ19) y = 25.470 ln x + 5.918 ŷ(x,Ωλ20) y = 24.460 lnx + 1.144
ŷ(x,Ωλ21) y = 25.060 lnx + 6.579 ŷ(x,Ωλ22) y = 25.089 ln x + 6.293 ŷ(x,Ωλ23) y = 24.390 lnx + 7.113
ŷ(x,Ωλ24) y = 24.587 lnx + 6.877 ŷ(x,Ωλ25) y = 24.753 ln x + 6.642 ŷ(x,Ωλ26) y = 25.006 lnx + 6.364
ŷ(x,Ωλ27) y = 24.560 lnx + 6.825 ŷ(x,Ωλ28) y = 25.055 ln x + 6.580 ŷ(x,Ωλ29) y = 24.000 lnx + 7.823
ŷ(x,Ωλ30) y = 24.533 lnx + 6.745 ŷ(x,Ωλ31) y = 24.691 ln x + 6.175 ŷ(x,Ωλ32) y = 24.717 lnx + 12.252
ŷ(x,Ωλ33) y = 25.488 lnx + 5.724 ŷ(x,Ωλ34) y = 24.194 ln x + 7.160 ŷ(x,Ωλ35) y = 24.837 lnx + 6.403
ŷ(x,Ωλ36) y = 24.247 lnx + 6.927 ŷ(x,Ωλ37) y = 24.966 ln x + 6.338 ŷ(x,Ωλ38) y = 24.305 lnx + 7.281
ŷ(x,Ωλ39) y = 25.527 lnx + 5.795 ŷ(x,Ωλ40) y = 25.051 ln x + 6.341 ŷ(x,Ωλ41) y = 24.662 lnx + 7.097
ŷ(x,Ωλ42) y = 24.056 lnx + 7.749 ŷ(x,Ωλ43) y = 25.292 ln x + 6.149 ŷ(x,Ωλ44) y = 25.150 lnx + 6.098
ŷ(x,Ωλ45) y = 24.261 lnx + 6.811 ŷ(x,Ωλ46) y = 25.496 ln x + 5.791 ŷ(x,Ωλ47) y = 25.235 lnx + 5.954
ŷ(x,Ωλ48) y = 25.022 lnx + 6.177 ŷ(x,Ωλ49) y = 25.528 ln x + 5.995 ŷ(x,Ωλ50) y = 24.681 lnx + 6.271
ŷ(x,Ωλ51) y = 25.274 lnx + 5.802 ŷ(x,Ωλ52) y = 24.858 ln x + 6.661 ŷ(x,Ωλ53) y = 25.229 lnx + 5.303
ŷ(x,Ωλ54) y = 24.708 lnx + 6.454 ŷ(x,Ωλ55) y = 25.294 ln x + 6.133 ŷ(x,Ωλ56) y = 24.714 lnx + 6.954
ŷ(x,Ωλ57) y = 24.780 lnx + 6.275 ŷ(x,Ωλ58) y = 23.509 ln x + 7.650 ŷ(x,Ωλ59) y = 25.037 lnx + 6.190
ŷ(x,Ωλ60) y = 24.891 lnx + 5.896 ŷ(x,Ωλ61) y = 24.524 ln x + 6.590 ŷ(x,Ωλ62) y = 24.994 lnx + 6.179
ŷ(x,Ωλ63) y = 25.027 lnx + 5.879 ŷ(x,Ωλ64) y = 25.081 ln x + 6.301 ŷ(x,Ωλ65) y = 24.576 lnx + 7.328
ŷ(x,Ωλ66) y = 24.149 lnx + 7.940 ŷ(x,Ωλ67) y = 25.119 ln x + 6.368 ŷ(x,Ωλ68) y = 24.527 lnx + 6.367
ŷ(x,Ωλ69) y = 25.106 lnx + 6.287 ŷ(x,Ωλ70) y = 25.043 ln x + 6.147 ŷ(x,Ωλ71) y = 24.843 lnx + 0.294
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Figure 1. The scatter plot of Ω

have 71 sets denoted by Ωλ1 , Ωλ2 , . . . , Ωλ71 . ŷ(x, Ωλ1), ŷ(x, Ωλ2), . . . , ŷ(x, Ωλ71) respec-
tively represent the regression function based on the sample data set Ωλ1 , Ωλ2 , . . . , Ωλ71 .
The specific sub-functions are shown in Table 5.

Step 4 Calculate respectively the volatility values of the 71 sub-functions by Formula
(2). The volatility values are shown in Table 8.

Step 5 Calculate the mean value µ̄ and the variance σ̂2 of the 71 volatility values:
µ = 6.215 and σ̂ = 0.021.
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Table 6. The sample data of Ω1

xi yi xi yi xi yi xi yi xi yi xi yi xi yi xi yi

1.00 15.2 2.50 32.6 4.00 42.7 5.50 48.7 1.10 17.5 2.60 34.3 4.10 43.0 5.60 49.1
1.20 17.7 2.70 33.9 4.20 43.3 5.70 49.5 1.30 18.9 2.80 35.6 4.30 43.9 5.80 50.7
1.40 21.5 2.90 35.9 4.40 44.4 5.90 51.2 1.50 22.0 3.00 37.0 4.50 45.1 6.00 52.1
1.60 24.3 3.10 37.7 4.60 45.4 6.10 53.0 1.70 25.3 3.20 37.9 4.70 46.2 2.30 30.1
1.80 25.4 3.30 39.1 4.80 46.7 2.40 32.5 1.90 27.9 3.40 39.7 4.90 46.8 3.80 41.5
2.00 28.0 3.50 40.3 5.00 46.9 3.90 41.7 2.10 29.6 3.60 40.4 5.10 47.9 5.30 47.9
2.20 29.7 3.70 41.3 5.20 48.1 5.40 48.3 – – – – – – – –

Table 7. The sample data of Ω2

xi yi xi yi xi yi xi yi xi yi xi yi xi yi xi yi

1.05 10.1 1.00 10.2 1.70 19.4 2.10 22.6 1.10 10.4 1.35 13.2 1.80 20.0 2.65 27.0
1.15 11.5 1.40 16.2 1.85 20.4 2.80 28.3 1.30 12.2 1.55 17.6 1.90 20.9 3.25 31.7
1.45 13.4 1.60 17.9 2.05 22.0 3.40 32.9 1.50 14.6 1.65 18.7 2.15 23.4 3.75 35.2
2.40 25.1 3.10 30.6 2.20 23.6 3.65 34.2 2.45 25.8 1.25 11.6 – – – –

Table 8. The 71 volatility values (%)

6.298 4.401 6.921 7.240 7.204 6.124 9.146 6.003 7.154 3.697 6.561 5.194 5.191
0.103 8.846 8.172 6.850 6.203 4.173 5.793 3.853 8.267 8.317 8.083 5.882 4.719
8.331 6.624 6.318 7.534 4.052 10.649 7.484 3.174 5.176 6.745 5.188 5.993 6.845
6.526 5.395 6.866 7.166 5.138 6.514 6.192 8.133 6.840 6.876 6.218 5.573 10.395
2.965 10.342 6.006 5.343 4.528 2.065 6.919 6.405 7.464 5.208 4.275 7.771 6.782
6.865 4.548 5.947 6.215 3.162 12.337 – – – – – – –

Table 9. Prediction intervals with the confidence level 95%

xi 1.6 1.7 1.9 2.0
yi 24.3 25.3 27.9 28.0
ŷi 20.142 21.553 24.142 25.336

Prediction Interval (15.342, 24.942) (16.753,26.353) (19.342,28.942) (20.536,30.136)
xi 2.1 2.2 2.4 2.5
yi 29.6 29.7 32.5 32.6
ŷi 26.472 27.554 29.580 30.530

Prediction Interval (15.342,24.942) (16.753,26.353) (19.342,28.942) (20.536,30.136)

Step 6 Calculate the interval of the real volume with the confidence level 95% of the
8 sample data by Formula (5). These prediction intervals are shown in Table 9. Here, xi

denotes the sample data; ŷi denotes the estimated value; yi denotes the real value.
From Table 9, we know that the estimated values are all in the corresponding interval,

which shows the feasibility, validity, reliability, and practicality of VR-TM. So VR-TM can
provide a good reference for decisions making. When β = 0.9, the [δ, β] of the regression
function is [6.608, 0.9]; When β = 0.95, the [δ, β] of the regression function is [6.694, 0.95].
Obviously, δ in the two description ordered pair is bigger than the ten percent of the max
predicted value. So, the reliability of this function is low. Then we should refuse the
regression function as the main basis of decision-making. At the same time, it is easy to
find that the length of the confidence interval is relatively long. Namely, the reference
range is too big, which can reduce the reliability of the parent regression function to a
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certain degree. For this case, too large reference range means that the sensitive coefficient
of total asset turnover to ROE is high. Also it shows its operating risk is high for a new
enterprise.

6. Conclusion. Regression analysis is a common data analysis tool. It is convenient for
people to make right decisions. Only when regression function is reliable, has it better
application value. The common test models for reliability are based on that the residual
error obeys the normal distribution. When this assumption does not hold in many ap-
plications, these test models cannot have application value, which will limit the applied
range of regression function greatly. Our VR-TM makes up for its shortcoming to a large
extent. Theoretical analysis and example calculation show that VR-TM not only has
good structure and interpretability, but also extends and perfects the existing regression
test methods. Also, VR-TM has a deficiency of complex computation. Our further work
is to structure the application process of model so as to facilitate the users.
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