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Abstract. This paper proposes a novel method (called DE-FSVM) which combines
fuzzy support vector machine (FSVM) with differential evolution. The fuzzy membership
function is redefined in consideration of the irregularly distributed dataset, and modified
differential evolution is applied to searching the optimal parameters. The simulation and
comparisons based on five UCI datasets and five classification approaches demonstrate
that the proposed method exhibits the highest average classification accuracy.
Keywords: Support vector machine (SVM), Fuzzy support vector machine (FSVM),
Fuzzy-membership, Differential evolution (DE), Outliers and noises, Class imbalance
learning

1. Introduction. Support vector machine (SVM) [1,2] is a machine learning method
based on the VC-theory and structural risk minimization principle, and it has been applied
to a variety of real-world classification problems successfully. However, there are usually
some outliers and noises samples in the real datasets. Since the SVM algorithm considers
all the training samples identically and gives them uniform weight, it may be not very
successful when there are outliers and noises in training set [3,4]. In order to diminish the
influence of noisy data, fuzzy support vector machine algorithm (FSVM) has been put
forward [5,6]. Besides, the method called class imbalance learning (CIL) has been used to
alleviate the impact of imbalance [7] in this paper. Fuzzy support vector machines for class
imbalance learning (FSVM-CIL) [8] has emerged to deal with both the problem of noisy
data and the problem of imbalance. While FSVM-CIL calculates the fuzzy membership
based on the distance between the sample and its class-center, it may not be accurate
when the dataset is irregularly-distributed.

It is well known that parameter selection is essential in improving the classification ac-
curacy of SVM. The simple and straightforward way of parameter selection is grid search
(GS) [9], but it is time-consuming and difficult. Some numerical optimization methods,
which are more efficient than GS, have been proposed [10], while these approaches are
instable and easy to trap into local optimum. To overcome the limitations above, evo-
lutionary algorithms have been successfully applied in the selection of SVM parameters
because of their high efficiency and global search ability [11-13]. And among the evolution-
ary algorithms, differential evolution is one of the most powerful stochastic real-parameter
optimization algorithms [14]. In consideration of the advantage of differential evolution:
simplicity, ease of implementation, reliability and high performance [15,16], it is applied
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in this paper to searching for the optimal parameters. However, it should be noticed that
the algorithm still needs to be modified to make it more efficient.

In this paper, a novel method is proposed to improve the FSVM for CIL, which can
address the problem of both noise/outliers and imbalance, and is more efficient. In DE-
FSVM, the fuzzy-membership values are assigned by both the distance between samples
and their class center and the affinity around them in consideration of the irregular dis-
tribution of datasets. In addition, an adaptive differential evolution algorithm is used to
select the optimal parameters to make the training process simple and improve the accu-
racy of classifier. DE-FSVM method is evaluated on five UCI datasets. Simulation results
show that the DE-FSVM method whose parameters selected by adaptive differential evo-
lution has the best performance compared with other SVM methods (SVM, FSVM, DEC,
FSVM-CIL).

This paper is organized as follows. Section 2 briefly reviews the theory of SVM. Sec-
tion 3 presents FSVM algorithm for imbalance. Section 4 describes modified differential
evolution. In Section 5, simulation results are showed and illustrated. Section 6 gives the
conclusion.

2. Fuzzy Support Vector Machine Learning Theory. For the binary classification,
the basic idea of SVM is to search for an optimal hyper-plane in the sample (kernel) space
to maximize the classification interval of samples from two classes. For a given training
set {(x1, t1), (x2, t2), . . . , (xl, tl)}, where xi ∈ RN represents a sample, and ti ∈ {−1, 1}
denotes the class of that sample, for i = 1, . . . , l. Nonlinear mapping function Φ(x)
is introduced to map the training samples into a high dimensional space. By selecting
the proper kernel function K(x, y) = Φ(x)T Φ(y) and introducing a slack variable ξi, the
general form of SVM can be formulated as follows:

min
ω,ξ

1

2
∥ω∥2 + C

l∑
i=1

∥ξi∥2

s.t. ti
(
ωT Φ(xi) + b

)
≥ 1 − ξi

ξi ≥ 0, i = 1, 2, . . . , l

(1)

where C is the penalty parameter, ξi is the slack variable, and Φ(x) is nonlinear map-
ping. The pair (ω, b) is used to define the hyper-plane, and ω is a coefficient vector, b is
a threshold.

The traditional SVM algorithm considers all the training examples uniformly and as-
signs the same weight to each sample. However, the real-world dataset is often unbalanced
and contains noises, and a reasonable method is to assign different weights to the sam-
ples based on their importance. Assume that the first p examples are positive (namely
ti = 1, i = 1, 2, . . . , p), and the remaining l − p examples are negative (namely ti = −1,
i = p + 1, p + 2, . . . , l). The general form of unbalanced FSVM can be represented as
follows:

min
ω,ξ

1

2
∥ω∥2 + C+

p∑
i=1

s+
i ξi + C−

l∑
i=p+1

s−i ξi

s.t. ti
(
ωT Φ(xi) + b

)
≥ 1 − ξi

ξi ≥ 0, i = 1, 2, . . . , l

(2)

where C+ and C− are the penalty parameter of positive class and negative class examples
respectively. s+

i and s−i are fuzzy membership functions, which are used to reflect the
importance of a sample in its class.
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3. Assigning Fuzzy-Membership Values. The definition of fuzzy-membership in [5]
only takes the distance between the sample and its class center as the measurement of
its importance. And the noisy sample may be regarded as the normal sample in the
irregularly distributed dataset, thus affecting the accuracy of algorithm. Figure 1 shows
the elliptically distributed dataset with a noisy point. The distance between the noisy
point x2 and the class center is the same as that of normal sample x1. According to Lin
and Wang [5], these two points will be assigned to the equal fuzzy membership, which is
evidently not in conformity with the reality. It is clear in Figure 1 that the space around
the noisy point x2 is relatively sparser than that of the normal point x1.

Figure 1. Elliptically distribution data with a noisy sample

Based on the observations above, the affinity around a sample should also be taken into
account when assigning fuzzy membership. As shown in Figure 1, the average distance
between the noisy sample x2 and its three neighbors {x6, x7, x8} is much larger than that of
the normal sample x1. The K-nearest neighbor rule is introduced to measure the affinity
around a sample. The affinity around a positive (negative) sample xi can be defined as:

D+
i =

1

K

∑
xj∈N+

K(xi)

∥xi − xj∥, D−
i =

1

K

∑
xj∈N−

K(xi)

∥xi − xj∥ (3)

where N+
K(xi), N−

K(xi) represent the set of K neighbors of xi in the positive and negative
sample set, respectively. The value of K is set as 5 in this paper.

Intuitively, the value of D+
i (D−

i ) is negatively related to the density around a sample,
and if it is denser around a sample, it is more likely to belong to the positive (negative)
class and vice versa. Based on the distance between a sample and its class center and the
affinity around a sample, the fuzzy membership in the paper is redefined as follows:

s+
i =

1 − α ∗ dcen+
i
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j
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, i = 1, 2, . . . , p

(4)

s−i =
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D−

j

)
max

j

(
D−

j

)
− min

j

(
D−

j

)
+ δ

m

,

i = p + 1, p + 2, . . . , l

(5)

where α and m are fuzzy parameters. δ is a really small positive number to guarantee that
the fuzzy-membership is greater than zero and the value of δ is set to 0.0001. dcen+

i =∥∥∥∥∥xi − 1
p

p∑
j=1

xj

∥∥∥∥∥ means the distance between a positive sample and its class center, and
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dcen−
i =

∥∥∥∥∥xi − 1
l−p

l∑
j=p+1

xj

∥∥∥∥∥ denotes the distance between a negative sample and its class

center, similarly.
Therefore, parameters needed to be regulated in DE-FSVM include penalty parame-

ter C, kernel parameter γ and fuzzy parameters α and m. According to the result in
[7], SVM algorithm can achieve better performance when C+/C− is set as the ratio of
majority class number to minority class number. So the penalty factor C+ is set as
C ∗ (l − p)/p and C− is set as C, C ∈ [20, 215]. The RBF kernel function in the paper

is K (xi, xj) = Φ (xi)
T Φ (xj) = exp (−γ||xi − xj||2) and the value range of γ is [2−15, 20].

Fuzzy parameters α and m are both within the range [0, 1].

4. Differential Evolution. Differential evolution (DE) algorithm is an adaptive global
optimization algorithm and belongs to the popular evolutionary algorithm. There are
four phases in DE: initialization, mutation, crossover and selection.

4.1. Initialization. A population containing NP individuals is generated randomly in
the initialization phase and each individual represents an XN -dimensional parameter
vector by the following form:

xij = xmin + (xmax − xmin) · rand(0, 1) (6)

where i = 1, 2, . . . , NP , j = 1, 2, . . . , XN , xmin and xmax are the lower bound and upper
bound of individual, respectively.

Then fitness value of each individual is evaluated and the optimal individual is selected.

4.2. Mutation. Mutation strategy DE/rand/1 is employed and the mutation vector will
be generated by the following equation:

vi = xk + F · (xt − xr) (7)

where vi represents the mutation vector of xi, and xk, xt, xr (k ̸= t ̸= r ̸= i) are three
distinct individuals extracted randomly from the current population. F is the scale factor.
In order to keep the diversity of population in early iterations and accelerate convergence
at later evolution process, F is redefined as:

F = Fmax −
(

I iter

Nmax

)2

· (Fmax − Fmin) (8)

where Fmax and Fmin are the upper bound and lower bound of F , respectively. I iter is
an iterative variable and Nmax is the maximum number of iteration.

4.3. Crossover. In the crossover phase, each dimension of individual xi and its mutation
vector vi are exchanged with a certain probability CR and the trial vector ui is generated:

uij =

{
vij if λ < CR or j = jrand

xij otherwise
(9)

where CR is the probability parameter. λ is a number generated in range (0, 1) uniformly.
j = 1, . . . , XN , and jrand ∈ {1, 2, . . . , XN} is a random index to ensure that at least one
parameter in trial vector ui is from the mutation vector vi. The probability parameter
CR is defined as follows to balance the exploration ability and exploitation ability of DE
algorithm [17]:

CR = CRmin +
I iter

Nmax

· (CRmax − CRmin) (10)

where CRmin and CRmax are the lower bound and upper bound of CR, respectively.
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4.4. Selection. The fitness value of individual xi and its trial vector ui are compared
and the winner will be a member in next generation. In order to find the parameters of
maximum classification accuracy, the selection phase can be described in the following
form:

xi =

{
ui if f(ui) > f(xi)
xi otherwise

(11)

where f(·) denotes the fitness function.
The common classifier performance evaluation G-mean (Gm), which is the geometric

mean of sensitivity Sn and specificity Sp, is adopted to assess the performance of a
classifier in this paper. The definition of Sn, Sp and Gm are as follows:

Sn =
TP

TP + FN
, Sp =

TN

TN + FP
, Gm =

√
Sn · Sp (12)

where TP, TN, FP and FN represent the number of true positives, true negatives, false
positives, and false negatives, respectively.

Ten times ten-fold cross-validation were implemented to ensure the reliability of simu-
lation results, and the fitness function is the mean of these results:

f(C, γ, α, m) =
1

10

10∑
k=1

Gmk (13)

Then the parameters which result in the highest cross-validation accuracy are the best, so
the objective of DE is to search the optimal parameters to maximize the fitness function.

5. Experiment Results. The proposed algorithm is evaluated by comparing it with
SVM [2], DEC [7], FSVM [5] and FSVM-CIL [8] algorithms. Ten-fold cross-validation
is carried out on each of the datasets to evaluate the performance of all classifiers. The
wildly used LibSVM package [18] is used to train the SVM model and LibSVM-weights-
3.20 package is employed to train all the FSVM models. All the numerical experiments
are performed on 3.20 GHz/4.00 GB PC by using matlabR2014a software. Five datasets
are selected from the UCI machine learning repository as the experimental datasets. The
details of these datasets are shown in Table 1, which contains the number of positive ex-
amples (Pos num), the number of negative examples (Neg num), the total number of ex-
amples (Tot num), the imbalance ratio (Im ratio), the total number of classes (Tot class),
and the number of classes selected as positive classes (Pos class).

Table 1. UCI datasets and related properties

Dataset Pos num Neg num Tot num Im ratio Tot class Pos class
Pima-Indians 268 500 768 1.87 2 1
Haberman 81 225 306 2.78 2 2

Ecoli 77 259 336 3.36 8 2
Glass 13 201 214 15.46 7 5
Yeast 51 1433 1484 28.10 10 5

The experimental results of SVM, DEC, FSVM, FSVM-CIL, DE-FSVM on five UCI
datasets are shown in Table 2. It can be seen from Table 2 that the performance of FSVM
is not necessarily better than that of traditional SVM algorithm even on dataset with
small unbalance such as Pima-Indians and Haberman. It is because these datasets may
be not standard spherical distributed. So it is reasonable and necessary to consider the
affinity around samples in the calculation of fuzzy membership in the paper. The design
of fuzzy membership in FSVM CIL is the same as that in FSVM, and only the distance
between the sample and its class center is considered in these algorithms, which causes
the importance of a sample not to be well reflected in the irregularly-distributed data. In



1164 M. ZHANG AND Z. JU

Table 2. Comparison of the classification results Gm(%) on five UCI datasets

Dataset Pima-Indians Haberman Ecoli Glass Yeast

SVM 67.41±0.63 52.80±2.01 87.16±1.05 92.65±3.49 42.45±3.64

FSVM 67.27±0.90 52.85±2.08 87.98±1.23 86.38±1.34 48.28±1.61

DEC 73.62±0.65 64.54±1.09 90.30±1.01 94.68±0.15 84.90±0.57

FSVM-CILcen
lin 73.95±0.70 64.76±1.95 90.20±0.99 93.51±0.26 84.91±0.45

FSVM-CILcen
exp 73.59±0.57 65.23±1.14 90.36±0.68 94.80±0.28 84.98±0.48

DE-FSVM 79.97±0.62 65.34±1.15 90.71±0.16 95.07±0.15 85.22±0.40

Table 3. Optimal parameter of DE-FSVM on five UCI datasets

Parameters Pima-Indians Haberman Ecoli Glass Yeast

logC
2 3.1275 10.8915 13.9095 10.8946 10.2135

logγ
2 −11.9835 −13.0504 −13.7835 −6.5673 −14.2515

α 0.6403 0.5128 0.3359 0.1034 0.7148

m 0.7025 0.6987 0.2820 0.0986 0.1978

addition, the proposed algorithm achieves the maximum Gm on datasets with different
unbalance ratios, which means that the proposed algorithm is superior to SVM, DEC,
FSVM, FSVM-CIL algorithms on imbalanced datasets in the presence of outliers and
noises. Though three additional parameters (m, K and α) are introduced in calculating
the fuzzy membership, it is not more time-consuming in search of the optimal parameters,
because the application of differential evolution enables the method to find better solution
with fewer iterations. Table 3 shows the optimal parameters of these algorithms on each
UCI dataset.

6. Conclusion. This paper presents a novel fuzzy SVM algorithm used to process unbal-
anced data with noises/outliers and a modified differential evolution is used to optimize
the parameters. Numerical experiments on five UCI datasets demonstrate the effective-
ness of the proposed method. The next step is to evaluate the proposed method on more
UCI datasets and try to apply other evolutionary algorithms in the parameter selection
for better performance.
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