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Abstract. In emerging nanotechnologies, due to the manufacturing process, a signif-
icant percentage of components may be unreliable. In order to make systems based on
unreliable components reliable, the design of fault tolerant architectures will be neces-
sary. This paper presents a fault tolerant technique for future nanocomputers, namely,
XOR/XNOR multiplexing. It is based on a massive duplication of imperfect devices and
randomized imperfect interconnections. Dependent on the stage number, the system can
function as XOR or XNOR. Bifurcation theory is used to analyze fault tolerant ability of
the system and the results show that XOR/XNOR has a high fault tolerant ability. Sim-
ilar to NAND multiplexing, this fault tolerant technique is potentially useful for future
nanoelectronics.
Keywords: Fault tolerant, XOR multiplexing, XNOR multiplexing

1. Introduction. With silicon technology scaling, we are inevitably faced with the ques-
tion of how to build a reliable system out of unreliable components. To tackle this prob-
lem, several fault tolerant techniques based on redundancy have been investigated, such as
N-tuple modular redundancy (e.g., triple modular redundancy) [1,2] and reconfiguration
[3,4]. However, with these techniques alone, high fault tolerance is hard to achieve for
nanocomputers. Thus, von Neumann’s multiplexing, which essentially treats unreliable
components as an integral part of the system, has received attention again [8]. A wealth of
papers reporting performance analysis of multiplexing have been published, and almost all
of those studies were concentrated on NAND multiplexing [5-11], majority multiplexing
[10-14] and NOR multiplexing [15].

However, none of those multiplexing schemes had ever mentioned how to realize the
function of XOR or XNOR. In fact, they are unable to achieve it. As a universal logic
gate, XOR and XNOR are widely used in integrated circuits; it should be necessary to
study XOR multiplexing or XNOR multiplexing. In this paper, the XOR/XNOR multi-
plexing for nanocomputers is presented for the first time. The new designed architecture
is composed of XOR gates and NAND gates. The XOR gates constitute the execution
unit which performs desired function and NAND gates constitute the restoring organs
which perform error correction function. The system performance of the architecture is
evaluated by studying its fault tolerant ability, which can be defined by gate error thresh-
old and input signal error threshold. The gate error threshold is the maximum gate error
probability that the system can still work properly, and the input signal error threshold is
the maximum input signal error probability that the system can be tolerant. XOR/XNOR
multiplexing has a high fault tolerant ability and depends on the stage number of the sys-
tem; it can function as XOR or XNOR. Both of XOR and XNOR multiplexing have a
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unique feature, and we name it as critical point property, which can indicate the fault
tolerant ability of the system.

The rest of paper is arranged as follows. In Section 2, the XOR multiplexing unit
and the error distributions in XOR multiplexing unit are presented. In Section 3, we
discuss the bifurcation analysis which is followed by Section 4: fault tolerant ability of
XOR/XNOR multiplexing system. And Section 5 is conclusion.

2. The XOR Multiplexing Technique.

2.1. An XOR multiplexing unit. As shown in Figure 1, XOR multiplexing unit has
the same structure with NAND multiplexing unit. Consider an XOR gate with an error
probability ε. Duplicate the XOR gate N times, and replace each input of the XOR gate
as well as its output by a bundle of N lines.

(a) NAND multiplexing unit (b) XOR multiplexing unit

Figure 1. NAND and XOR multiplexing unit

The randomizing unit U performs “random permutation”; through this operation, each
input from the first bundle is randomly paired with an input from the second bundle
to form the input pair of one of the duplicated XOR gates [6]. Assume that the failure
probability ε is a constant. And in this article, we only consider the von Neumann fault.
Other types of faults (such as fault model Stuck-at-0 and Stuck-at-1) are not taken into
account.

2.2. Error distribution in XOR multiplexing unit. The XOR multiplexing unit is
shown in Figure 1(b). Assume that (x, y, z) are the probabilities of two inputs being
stimulated and of output being stimulated, respectively. If the error probabilities in the
two input lines are independent, the probability of the output of XOR gate that is found
stimulated is z = x(1 − y) + y(1 − x) (assuming that the XOR gate is fault free). If each
gate has a probability ε of making a von Neumann error, the probability of its output
being stimulated is

z = (1 − ε) [x (1 − y) + y (1 − x)] + ε [xy + (1 − x) (1 − y)] (1)

And the probability of its output to be non-stimulated is 1 − z. If the N XOR gates
function independently, then the entire XOR multiplexing unit constitutes a Bernoulli
sequence. The distribution of the probability of stimulated output is, therefore, the
binomial distribution, the probability of exactly k outputs being stimulated is

P (k) =

(
N
k

)
zk(1 − z)N−k (2)

When N is rather large (N > 1000), the probability density of k can be obtained now
as

f (k) =
1√

2π
√

Nz (1 − z)
e
−1/2

(
(k−Nz)

/√
Nz(1−z)

)2

(3)
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Therefore, the probability of the number of stimulated outputs of the XOR multiplexing
unit could be approximated by a normal distribution when N is extremely large [6].

3. Bifurcation Analysis of XOR/XNOR Multiplexing System. Multiplexed sys-
tems contain two types of organs. The first type is the executive organ which performs
the desired basic operations on the bundles. The second type of organ uses the redun-
dant information available on the input bundle to provide more reliable information on
the output bundle. Any logic gate, like NAND gate, NOR gate, AND and OR gates,
effectively alternates critical inputs (which produce critical errors) and subcritical inputs
(which produce subcritical errors), thereby performing error correction. Among them,
NAND gate restoring organ is the first two-layer restoring organ with effective error cor-
rection ability. As shown in Figure 2, XOR/XNOR multiplexing system is composed of
XOR multiplexing unit and NAND restoring organs. And in order to make system stable,
multiply restoring organs would be necessary. Obviously, the system will function as XOR
when stage number is odd and function as XNOR when stage number is even.

In order to gain understanding of the associated concept of reliable computation and
the system dynamics of probabilistic logics, here, we focus on the operation of individual

Figure 2. XOR/XNOR multiplexing system

Figure 3. Schematic of a full binary tree whose nodes are unreliable two
inputs XOR gates and NAND gates with gate error probability ε
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Figure 4. Bifurcation diagram for cascaded XOR gates and NAND gates

two-input unreliable XOR gates and NAND gates in a binary tree of cascaded XOR gates
and NAND gates as shown in Figure 3 [8]. Assume that the NAND gates have the same
error probability to make a von Neumann error while the input and output lines function
reliably. Let us denote the probabilities of the two inputs of XOR gate being stimulated
by X, Y and further assume that the two inputs are independent. Then the probability
of the output of XOR gate being stimulated is

Z1 = (1 − ε) [X (1 − Y ) + Y (1 − X)] + ε [XY + (1 − X) (1 − Y )] (4)

In the following analysis, we assume that this circuit is a discrete time system. Also
assume that all inputs to the XOR gates are independent and each two inputs of those
XOR gates have the same probabilities X and Y of being stimulated. This structure
guarantees that the inputs to all NAND gates at an arbitrary stage n are also independent
and have equal probabilities of being stimulated, which we denote by Zn [8]. Then for
the second stage, the first stage of NAND gates, the probability of the output being
stimulated is

Z2 = εZ1
2 + (1 − ε)

(
1 − Z1

2
)

= (1 − ε) + (2ε − 1) Z1
2 (5)

For such a construction, (5) reduces to a simple iterative equation

Zn+1 = (1 − ε) + (2ε − 1)Zn
2 (6)

In order to find out how the signal propagation in this circuit depends on ε, bifurcation
analysis is used to analyze (6) [7]. For any fixed 0 ≤ ε ≤ 1/2, we choose an arbitrary
initial condition X, Y and generate sequences Zi, i = 1, 2, . . . , n, . . ., by iterating (6)
until it converges to an attractor. Those attractors for the sequences are then plotted
against each ε [7,8]. This leads to the bifurcation diagram in Figure 4 (∆ε = 0.001). The
bifurcation point divides the diagram into two regions, which are: 1) 0 ≤ ε < ε∗ and 2)
ε∗ ≤ ε ≤ 1/2. When ε∗ ≤ ε ≤ 1/2, the system has a stable fixed point solution, and by
solving the equation z0 = (1 − ε) + (2ε − 1)z0

2, then we get

z0 =
1 −

√
1 − 4 (2ε − 1) (1 − ε)

2 (2ε − 1)
(7)

By stability, it means that for any arbitrary initial inputs condition X and Y , the
output Zn will converge to z0 when n is large. In other words, in this region, the system
no longer functions as XOR or XNOR any more. When 0 ≤ ε < ε∗, z0 loses stability, and
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the motion is periodic with period 2. We denote those two points by Z+ and Z−. And at
nth stage, when Z+ is input, then Z− would be output and vice versa [7,8]. That means

Z+ = 1 − ε + (2ε − 1)Z−
2 (8)

Z− = 1 − ε + (2ε − 1)Z+
2 (9)

From (8) and (9), one obtains

Z± =
1 ±

√
4(1 − ε)(1 − 2ε) − 3

2(1 − 2ε)
(10)

Clearly, when ε = ε∗ , we have Z+ = Z− and it can be derived that ε∗ =
(
3 −

√
7
)
/4 =

0.08856 · · · . Now it is easy to see that 0 ≤ ε < ε∗ is the parameter interval where the
system functions and ε∗ is the gate error threshold. When ε > ε∗, the outputs converge
to stable fixed point z0 regardless of what the initial inputs are.

Fix error probability ε from 0 to 0.1, and plot the 3-D diagrams of X, Y and Z for
both XOR and XNOR, which leads to Figure 5. From Figure 5, we can clearly see the
transformation of output from two distinct states to a fixed point when we fixed error
probability ε from 0 to 0.1, with ε∗ as the “bifurcation” point.

(a) XOR, fixed ε from 0 to 0.1 (b) XNOR, fixed ε from 0 to 0.1

Figure 5. 3-D diagrams of XOR and XNOR for X, Y and Z

4. Fault Tolerant Ability Analysis. In the last section, we analyzed the tolerant
ability of the gate error probability (gate error threshold). Now let us analyze the tolerant
ability of input signal error probability (input signal error threshold). In order to map
each output probability to a logic state, we need a threshold z∗. According to Figure 4,
it is not so difficult to find out the truth that z0 (ε∗) is a good choice for z∗. It is simple
and effective. Substituting ε = ε∗ into (7) then we have

z0(ε∗) =
1 −

√
1 − 4(2ε∗ − 1)(1 − ε∗)

2(2ε∗ − 1)
= 0.6076 (11)

Below, we shall interpret [0, z∗) as non-stimulated state and (z∗, 1] as stimulated state.
Fix the input Y = 1 and Y = 0, and then we can get 3-D diagrams as shown in Figure 6.
Clearly, for XOR and XNOR multiplexing, system has higher fault tolerant ability when
inputs are both stimulated or both non-stimulated. Seen from Figure 6, the effectiveness
of this threshold is obvious.

Note that for each different fixed Y , a different value of X (here we name it as critical
point and denote it by x0) divides the output into two states when 0 ≤ ε < ε∗. Take
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(a) XNOR, fixed Y = 0 (b) XNOR, fixed Y = 1

(c) XOR, fixed Y = 0 (d) XOR, fixed Y = 1

Figure 6. 3-D diagrams of XNOR and XOR multiplexing

Y = 0 as an example, in the interval 0 ≤ ε < ε∗, when X < x0, the output would be non-
stimulated (for XOR) or stimulated (for XNOR), and when X > x0, the output would
be stimulated (for XOR) or non-stimulated (for XNOR). The calculation of critical point
can help us more intuitively understand the fault tolerant ability of system. Since when
n is large enough and 0 ≤ ε < ε∗, the output only depends on the input condition: input
X and Y have the same logic state (both stimulated or both non-stimulated) or have
different logic state (one of the inputs is stimulated and the other one is non-stimulated).
Let us denote the probability that two input X and Y have different logic state by P1,
and denote the probability that two input X and Y have the same logic state by P2. So
the ratio of P1 and P2 will be a key parameter to determine the final output Zn is larger
than z∗ or not. X and Y are the probabilities of inputs being stimulated, then 1 − X
and 1 − Y are the probabilities of inputs being non-stimulated. P1 and P2 are shown as
follows.

P1 = X(1 − Y ) + Y (1 − X) (12)

P2 = XY + (1 − X)(1 − Y ) (13)

For XOR (XNOR), if we need the output to be stimulated, then P1/P2 must be larger
(smaller) than a specific value which is greater than one. Since the output logic state is
associated with the output threshold z∗, the specific value will be a function of z∗ and the
mathematic relation between them is shown below.

P1

P2

=
X(1 − Y ) + Y (1 − X)

XY + (1 − X)(1 − Y )
>

z∗
1 − z∗

(14)

Clearly, P1 + P2 = 1, hence, Equation (14) is equivalent to

P1 = X(1 − Y ) + Y (1 − X) > z∗ (15)
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If P1 > z∗, the final output would be larger than threshold (stimulated) for XOR and
smaller than threshold (non-stimulated) for XNOR. The inequality becomes

P1 = X(1 − Y ) + Y (1 − X) < z∗ (16)

The final output would be smaller than threshold (non-stimulated) for XOR and larger
than threshold (stimulated) for XNOR. Hence, it is easy to obtain the critical point x0

for each fixed Y by solving the following equality

x0(1 − Y ) + Y (1 − x0) = z∗ (17)

Critical point x0 is a function of Y ; these critical points are then plotted against each
Y (∆Y = 0.01). This leads to Figure 7(a). It shows that the diagram has two regions and
for each different Y . Critical point x0 has different values and there is a parameter interval
that makes the system no longer function even though the system is fault free, and the
parameter interval approximates 0.3924 < Y < 0.6076. If the value of one of inputs is in
this interval, then the output will always be stimulated for XNOR and non-stimulated for
XOR. This property is quite different from NAND multiplexing. In [6-8], they considered
the worst scenario of NAND nultiplexing: inputs x = y. Under the circumstance, critical
point of NAND is a constant, as shown in Figure 7(b), any inputs in the interval [0, x0)
produce an output in the interval (x0, 1], and vice versa. That means any input condition
will produce a valid output.

(a) XOR/XNOR multiplexing (b) NAND multiplexing

Figure 7. Critical point against each Y

Table 1. Critical points for several fixed Y

Y = 0 Y = 0.1 Y = 0.2 Y = 0.3 Y = 0.4
x0 0.60760 0.63450 0.67933 0.76900 /

Y = 0.6 Y = 0.7 Y = 0.8 Y = 0.9 Y = 1
x0 / 0.23100 0.32067 0.36550 0.39240

In order to demonstrate the tolerant ability of input signal error probability of the
system more intuitively, we extracted several fixed Y and the corresponding x0 from
Figure 7(a). These lead to Table 1. Let us take Y = 0.7 as an example, it can be
seen that when input Y has a probability of 70% being stimulated (It means 30% error
probability), any stimulated probability smaller than 23.1% of the other input X could
be accepted. That is to say the system can tolerate error probabilities of 30% and 23.1%
for the inputs Y and X. Other situations are similar so we omit them here. It also can be
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obtained that the maximum input signal error probability that the system can tolerate is
0.3924 (39.24%); namely, the input signal error threshold is 0.3924.

5. Conclusion. In this paper, we have studied a new fault tolerant architecture: XOR/
XNOR multiplexing. The system is expected to work at an acceptable reliability level
when inputs have different logic state and expected to work at a much higher reliability
level when inputs have the same logic state. Dependent on stage number, the system can
function as XOR or XNOR. This architecture is potentially effective in protection against
transient faults for systems based on unreliable nanometerscale devices.

Fault tolerant techniques and architectures are indispensable for nanocomputers. In the
future work, we will be committed to the study of how to improve the system performance
of the proposed multiplexing scheme, such as exploring other restoring organs with better
performance. Also, we will study other fault tolerant techniques and focus on hardware
redundancy, such as developing new fault tolerant architectures.
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