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Abstract. As a technique for edge-preserving smoothing, gradient-domain processing
is frequently used. Its operation is realized by modifying image gradients and then recon-
structing the resulting image from the modified gradients. Generally, the reconstruction
operation is realized by using an iterative or a direct method. The iterative methods might
be unstable and affected by preconditioning, although they are frequently used and tend
to be faster than the direct methods. On the other hand, generally, the direct methods
require a huge memory space and are very time-consuming. Furthermore, it is difficult
to apply them to large scale problems in spite of their stability and wide applicability. In
this study, to cope with the problems, we propose a new edge-preserving smoothing filter
which reconstructs the resulting image locally from the gradient-domain based on a direct
method. The effectiveness of the proposed method is verified through a series of exper-
iments regarding edge-preserving smoothing and noise removal using natural grayscale
standard images.
Keywords: Gradient-domain processing, Edge-preserving smoothing, Image gradient,
Direct method

1. Introduction. Image smoothing is processing to obtain an image having solid con-
trasting density [1, 2]. As fundamental image smoothing methods, the mean filter and
the Gaussian filter are frequently used. However, such simple smoothing methods not
only smooth undesired contrasting density but also ruin the detailed part and edges in a
processed image. In order to cope with this problem, edge-preserving smoothing has been
studied [3, 4].

The bilateral filter is a representative edge-preserving smoothing filter [3]. This filter
has two filtering weights; one is the spatial weight in the image space and the other is the
range weight in the intensity space. Edge-preserving smoothing is realized by suppressing
the smoothing effect of the filter if the differences between the intensity of a pixel of
interest (POI) and those of its neighboring pixels are large.

On the other hand, edge-preserving smoothing method based on gradient-domain im-
age processing such as Poisson image editing [5] was proposed and has been applied to
various kinds of applications [6, 7, 8, 9]. In particular, as a simple and powerful edge-
preserving smoothing, the gradient-domain filtering has been proposed [10]. This filtering
method focuses on the gradient information; and it can also be applied to various kinds
of image processing such as edge enhancement, line extraction and deletion. However,
in the gradient-domain filtering, a resulting image in the original image space must be
reconstructed from corresponding gradients by solving a Poisson’s equation under a given
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boundary condition. Generally, the reconstruction operation is realized by using an itera-
tive method or a direct method. The iterative methods might be unstable and affected by
preconditioning although they are frequently used and tend to be faster than the direct
methods. On the other hand, generally, the direct methods require a huge memory space
and are very time-consuming. Furthermore, it is difficult to apply them to large scale
problems in spite of their stability and wide applicability.

In this study, to cope with those problems on memory space and computational costs of
the direct methods, we propose a new edge-preserving smoothing filter which reconstructs
the resulting image locally from the gradient-domain. Concretely, for edge-preserving
smoothing, only the weak gradient is suppressed in the gradient-domain, and then the
resulting image is reconstructed locally from the gradient information. Furthermore,
in order to obtain the reconstructed image quickly, we solve the Poisson’s equation by
using a modified direct method suitable for the local processing. The proposed method
makes users possible to take advantage of the features of the direct methods also in large-
scale image processing. The effectiveness of the proposed method is verified through a
series of experiments regarding edge-preserving smoothing and noise removal using natural
grayscale standard images.

2. Gradient-Domain Image Filtering. In this section, the edge-preserving smoothing
based on the gradient-domain image filtering [10] is explained. An image gradient is a
directional change in the intensity or color in an image. It can be calculated as a difference
value between a POI and its neighboring pixels. By letting a pixel value at a position (i, j)
in an input image be f(i, j), its gradient ~g(i, j) is calculated by the backward-difference
as follows:

~g(i, j) = (gi(i, j), gj(i, j)) , (1)

gi(i, j) = f(i, j) − f(i, j − 1) , (2)

gj(i, j) = f(i, j) − f(i − 1, j) , (3)

where gi(i, j) and gj(i, j) are horizontal and vertical gradients, respectively.
If the edge in the input image has a large variation in pixel value, then the gradient

in the gradient-domain |~g(i, j)| becomes a large value (i.e., strong gradient). On the
other hand, regarding small fluctuations of contrast density, |~g(i, j)| becomes a small
value (i.e., weak gradient). Thus, the edge-preserving smoothing is realized by processing
the gradient ~g(i, j) based on its degree of variation. Concretely, if |~g(i, j)| is less than
a threshold value th (i.e., it is weak gradient), its value is replaced by zeros. If |~g(i, j)|
is equal to or greater than th (i.e., strong gradient), its value is preserved. These are
denoted by the following equation:

~g∗(i, j) =

{

~g(i, j) if |~g(i, j)| ≥ th

0 otherwise,
(4)

where | · | denotes a Euclidean norm.
The output image is reconstructed from the obtained gradient-domain image ~g∗ by

solving a boundary value problem represented by a Poisson’s equation. The Poisson’s
equation to be solved is described as follows:

∆~f ′ = ∇~g∗, (5)

~f ′
∣

∣

bΩ
= ~f

∣

∣

bΩ
, (6)

where Ω is the target region, bΩ the boundary, and ~f ′ the output image reconstructed
from a gradient image ~g∗.

The intensities of the reconstructed image ~f ′ at the boundary bΩ are equal to those of

the original image; and those are ∆~f ′ =∇~g∗ in the processed region Ω. Here, ∆~f ′ is the
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second-order partial derivatives (i.e., Laplacian) of the reconstructed image ~f ′ denoted as

∆~f ′ = ∂2 ~f ′

∂i2
+ ∂2 ~f ′

∂j2 . Similarly, ∇~g∗ is denoted by ∇~g∗ =
∂g∗i
∂i

+
∂g∗

j

∂j
. In this regard, ∇~g∗

is calculated by using the forward difference because the gradient image ~g is calculated
by using the backward difference. This Poisson’s equation can be solved by an iterative
method or a direct method [11].

2.1. Iterative method. The iterative methods are ways to obtain an approximate so-
lution successively by iterative processing. The following is a concrete description of the
successive over-relaxation (SOR) which is a variant of the Gauss-Seidel method for solving
a linear system of equations. Now, by letting a pixel value at a position (i, j) of an output
image be f ′(i, j), the solution of the Poisson’s equation given by Equations (5) and (6) is
calculated by the iterative expression of SOR as follows:

f ′n+1(i, j) = (1 − ω)f ′n(i, j) + ω (f ′n+1(i, j − 1) + f ′n+1(i − 1, j)
+f ′n(i + 1, j) + f ′n(i, j + 1) −∇~g∗(i, j)) /4,

(7)

where n is an iteration count, ω the relaxation factor. Generally, ω is set to be from 1 to
2; and it is frequently set to be 1.95 to obtain good convergence properties. However, the
iterative methods take much computational cost for solving the Poisson’s equation due to
the iterative calculation.

2.2. Direct method. In this subsection, as the other solution, the direct method is

explained. Now, suppose that a two-dimensional image ~f with m× n pixels is made into

a one-dimensional signal. Let the reshaped one-dimensional version of the image ~f be ~̂f
as follows:

f̂(k) = f(i, j). (8)

Here, the index k is denoted as follows:

k = i + m(j − 1). (9)

Now, the Laplacian of the image ~f , i.e., ∆~f , is denoted by using ~̂f as follows:

∆~f = ~L ~̂f , (10)

where ~L is the square matrix having the filtering coefficients of the Laplacian filter with
m×n rows and m×n columns.

~L =





















~A 0 · · · 0
~C ~B ~C

0 ~C ~B ~C
...

...
. . . 0
~C ~B ~C

0 · · · 0 ~A





















. (11)

In Equation (11), ~A, ~B, and ~C are denoted as follows:

~A =











1 0 · · · 0

0 1
...

...
. . . 0

0 · · · 0 1











, (12)
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~B =



















1 0 · · · 0
−1 4 −1

0 −1 4 −1
...

...
. . . 0
−1 4 −1

0 · · · 0 1



















, (13)

~C =













0 0 · · · 0
0 −1
...

. . .
...

−1 0
0 · · · 0 0













. (14)

Here, ~A, ~B, and ~C are all m × m square matrices. ~A is an identity matrix; the diagonal
elements of the first and m-th rows in ~B are 1, and the diagonal elements of the first
and m-th rows in ~C are 0. This is because, as shown in Equation (6), it is taken into
consideration that the values at the boundary are the same to those of the input image.

From Equations (5) and (10), the reconstructed one-dimensional image ~̂ ′

f is denoted as
follows:

~̂ ′

f = ~L−1 ~̂G , (15)

~̂G =



















∇~g∗(1, 1)
∇~g∗(2, 1)

...
∇~g∗(i, j)

...
∇~g∗(m, n)



















, (16)

where ~̂G is the one-dimensional version of ∇~g∗ as a similar manner to Equation (8). In

this regard, the size of ~L becomes the square of the image size; it becomes too large with
increasing the size of the image. The inverse matrix calculation for such large-scale matrix
requires too much computational memory; and it is difficult to obtain the inverse matrix
with general purpose computers.

3. Proposed Method. The direct method requires too much memory to calculate the
inverse matrix of a large-scale ~L. To cope with this problem, we propose a local block-
wise image reconstruction processing. The following is concrete explanation of the local
reconstruction method.

Let the position of a target pixel be (i, j), a local region of an input image ~fl , the

window size of the local region 2r+1, the one-dimensional version of the region ~̂
lf , and

the corresponding square matrix having the filtering coefficients of a Laplacian filter as

shown in Equations (11)-(14) ~Ll. Now, the Laplacian of the image ~fl, i.e., ∆~fl, is denoted

by using ~̂
lf as follows:

∆~fl = ~Ll
~̂

lf . (17)

The reconstructed local one-dimensional image ~̂ ′

lf is denoted as follows:

~̂ ′

lf = ~L−1

l
~̂Gl, (18)
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~̂Gl =



















∇~g∗(i − r, j − r)
∇~g∗(i − r + 1, j − r)

...
∇~g∗(i, j)

...
∇~g∗(i + r, j + r)



















. (19)

Here, ~Ll is equal to the case of Equation (11) with the size of (2r+1)2 rows and (2r+1)2

columns. Thus, Equations (12)-(14), which are the elements of the coefficients, similarly,
are also square matrices with (2r+1) rows and (2r+1) columns. This processing is applied
to the entire image by using a sliding window manner as shown in Figure 1.

As shown in the figure, multiple processing results from the sliding windows are obtained
for a POI. Those results for a POI are merged by calculating the mean value of the results
as the final output value. In this regard, the values at boundary bΩ in the local regions
are obtained by using only the values in the region Ω because those values are the same
to those of the input image.

Figure 1. Filtering process with a sliding window manner

This method has two parameters, the window size r of a local region and the threshold
value th in the gradient-domain processing. The former parameter and the latter one
control the degree of smoothing and the amplitude of the edge should be preserved,
respectively.

Figure 2 shows the differences of the smoothing results between the gradient-domain
filtering [10] and the proposed method with various parameters. It can be seen that the
proposed method shows superb edge-preserving smoothing effect in the case of the same
threshold th. This is because the gradient-domain filtering processes the entire image
at once without considering the local context of the input image. On the other hand,
the proposed method can control the degree of smoothing by changing the parameters.
As shown in Figure 2, both the window size and the threshold can control the degree of
smoothing.

Furthermore, the proposed method can be applied to various kinds of image processing
by changing the processing method of the gradients. For example, a typical example is
as follows:

~g∗(i, j) =

{

α~g(i, j) if |~g(i, j)| ≥ th

β~g(i, j) otherwise.
(20)

Here, α and β are the parameters to control the degrees of enhancement of the strong and
the weak gradients, respectively. Figure 3 shows the output images for various parameter
pairs α and β. In this case, the other parameters r and th were set to be 2 and 20,
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respectively. It can be confirmed that edge and gradation in flat part are enhanced by
changing α and β, respectively.

(a) Original (b) th = 10 (c) th = 20 (d) th = 40

(e) (r, th) = (1, 10) (f) (r, th) = (5, 10) (g) (r, th) = (9, 10) (h) (r, th) = (13, 10)

(i) (r, th) = (1, 40) (j) (r, th) = (5, 40) (k) (r, th) = (9, 40) (l) (r, th) = (13, 40)

Figure 2. Differences between the gradient-domain filtering and the pro-
posed method: (a) original image, (b)-(d) results by the gradient-domain
filtering, (e)-(l) results by the proposed method

(a) (α, β) = (1, 1) (b) (α, β) = (2, 1) (c) (α, β) = (3, 1)

(d) (α, β) = (1, 3) (f) (α, β) = (2, 3) (g) (α, β) = (3, 3)

Figure 3. Enhancement results by the proposed method with various parameters
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4. Experiments. The edge-preserving smoothing and noise removal performance of the
proposed method was verified quantitatively and qualitatively through a series of ex-
periments. In the experiments, twelve images included in the standard image database
(SIDBA) [12] were used. All the images have 256×256 pixels and are 8-bit grayscale ones.

The input images were generated by superimposing Gaussian noise (with standard de-
viation σ =5, 10, 15) on the original images. The quantitative evaluation was conducted
by using the mean squared error (MSE) between the original images and the correspond-
ing resulting images. The smaller MSE value means that the resulting images are better
and more similar to the original images. As methods for comparison, the conventional
gradient-domain filtering [10] was employed. Furthermore, the bilateral filter was em-
ployed just for reference. The parameters of those methods were set so that those methods
show the best MSE values.

Table 1 shows the MSEs for each image by each method. In addition, Figure 4 shows
some resulting images for “Woman”. As shown in Table 1, the bilateral filter shows
the best performance for all the images and the amplitudes of Gaussian noise. The
proposed method and the gradient-domain filtering take the second and the third places,
respectively. In particular, the MSE values of the gradient-domain filtering become greater
than those of the input image. This can be considered that the gradient-domain filtering
is applied to the entire image at the same time and its filtering effect is slightly strong.

As shown in Figure 4, all the results by the gradient-domain filtering show the obvious
residual noise. On the other hand, the other methods show less residual noise than the
gradient-domain filtering in the cases of small amplitudes; and the results are almost
equivalent with each other. However, in the case of large amplitude noise, the proposed
method shows more residual noise than the bilateral filter.

Table 1. MSE evaluation (σ = 5, 10, 15): input image (Input), bilateral
filter (BF), gradient-domain filtering (Grad.), proposed method (Prop.)

σ = 5 σ = 10 σ = 15
Image Name Input BF Grad. Prop. Input BF Grad. Prop. Input BF Grad. Prop.

Airplane 24.9 13.2 25.0 17.3 100.9 37.8 99.2 52.0 224.8 68.6 224.4 100.4
Barbara 24.9 17.8 25.0 22.0 100.0 54.6 100.0 72.9 223.8 100.5 223.6 140.0

Boat 25.2 12.4 25.1 17.3 100.0 34.1 98.7 50.7 225.3 58.1 221.1 86.9
Bridge 25.0 21.9 25.1 24.5 99.4 69.2 99.4 89.0 220.3 125.1 220.3 176.4

Building 23.9 16.6 24.3 21.3 96.8 44.6 97.1 65.0 216.4 76.3 216.5 109.4
Cameraman 25.0 11.8 24.9 15.3 96.4 34.1 92.9 47.8 212.3 60.3 203.9 86.6

Girl 25.0 12.8 25.1 19.2 98.1 29.2 98.0 45.0 218.6 46.1 215.6 65.7
Lax 25.3 20.7 25.4 24.8 100.7 60.1 100.7 81.8 224.1 108.9 224.0 153.2

Lenna 25.1 12.5 25.1 16.7 100.0 33.4 99.9 46.9 225.4 57.4 224.9 84.7
Lighthouse 23.9 15.8 24.1 19.5 95.3 48.3 95.4 64.4 213.3 89.3 213.4 125.0

Text 23.8 18.0 24.4 21.9 93.9 51.6 94.0 71.0 211.7 90.7 212.0 133.1
Woman 25.0 13.5 25.2 18.4 98.6 35.1 98.6 51.1 223.7 60.7 222.5 89.1
Average 24.8 15.6 24.9 19.8 98.3 44.3 97.8 61.5 220.0 78.5 218.5 112.5

5. Conclusions. In gradient-domain image filtering, an output image in the original
space must be reconstructed from a gradient domain image by solving a Poisson’s equation
under a given boundary condition. To solve the equation by a direct method requires too
huge memory space and takes much computational cost. To cope with the problems on
memory size and computational cost, we proposed the local-reconstruction-based gradient-
domain image filtering especially for edge-preserving smoothing. Furthermore, in order
to obtain the reconstructed image quickly, we solved the Poisson’s equation by using the
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(a) σ = 5 (b) σ = 10 (c) σ = 15

(d) (σd, σr) = (0.99, 12) (e) (σd, σr) = (0.99, 28) (f) (σd, σr) = (1.32, 36)

(g) th = 5 (h) th = 5 (i) th = 15

(j) (r, th) = (1, 20) (k) (r, th) = (2, 40) (l) (r, th) = (2, 65)

Figure 4. Noise removal results for “Woman”: (a)-(c) noise-corrupted
images, (d)-(f) results by the bilateral filter, (g)-(i) results by the gradient-
domain filtering, (j)-(l) results by the proposed method

modified direct method. Concretely, only the weak gradient is suppressed in the gradient-
domain, and then the resulting image is reconstructed and merged locally.

In the experiments, we compared the performance of the proposed method on noise
removal with some methods. As methods for comparison, the conventional gradient-
domain filter was employed; and the results by the bilateral filter was shown just for
reference. The proposed method showed the better performance than the conventional
gradient-domain filtering; and this means the problems on the memory-space and the
computational cost of the gradient-domain filtering were solved.

The future work includes fine adjustment of the suppression of the weak gradient in
edge-preserving smoothing and application to other kinds of image processing.
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