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Abstract. An azimuth-elevation two-dimensional angle of arrival (2-D AOA) estima-
tion algorithm for the L-shaped electromagnetic vector sensor (EMVS) array is presented
in this paper. This algorithm is based on the rank-(L1, L2, ·) block component decomposi-
tion (BCD) tensor modeling, which can make the most of the multiway structural infor-
mation of electromagnetic signals accomplish the blind estimation of array parameters.
Besides, the algorithm can automatically achieve the azimuth and elevation angles pair-
matching of the partially polarized signal. The numerical experiment results demonstrate
that even under the conditions of low SNR and small angular separations, the proposed
algorithm still maintains the advantage on accuracy and robustness of parameter estima-
tion.
Keywords: EMVS array, 2-D AOA, Partially polarized signal, Tensor decomposition,
Rank-(L1, L2, ·) BCD

1. Introduction. Different from the traditional scalar sensor, electromagnetic vector
sensor (EMVS) can detect electromagnetic wave with different polarization forms and
fully acquire information carried by the wave. Many algorithms have been presented to
study the problem of parameter estimation of EMVS array, including MUSIC [1], ES-
PRIT [2] and other methods [3, 4, 5, 6, 7]. However, the existing methods are based
on either one-dimensional vector or two-dimensional matrix modeling, which are inap-
propriate to the received signal of EMVS array with inherent multiway structure. In
recent years, the tensor-based method has become a research hotspot in signal processing
[8, 9]. Compared with vector and matrix modeling, tensor modeling is more suitable to
the multiway structure signal [10, 11]. For this reason, tensor decomposition has been
applied in EMVS array signal processing in the past decade [1, 12, 13, 14, 15]. However,
the existing tensor-decomposition-based parameter estimation methods for EMVS array
are mostly based on canonical polyadic decomposition (CPD) modeling. Such model has
the advantage of decomposition uniqueness, whereas the decomposition factors must be
rank-1, which may not be satisfied in practice [16]. It is expected that a new framework
needs to be developed, which not only can maintain the uniqueness of decomposition but
also relax the requirement for rank constraint. In 2008, L. De Lathauwer proposed a
tensor decomposition model, i.e., block component decomposition (BCD), which is able
to overcome such defect [17, 18]. BCD-based methods maintain the advantages of the
existing tensor decomposition methods and have various forms [19, 20, 21, 22]. To the
best of our knowledge, few papers report the application of BCD for vector sensor ar-
ray. Besides, the angle pair-matching is a difficult problem for 2-D AOA of array signal
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processing. Since BCD method possesses the blind estimation feature, it can solve such
problem suitably. Motivated by the background above, this paper proposes a BCD-based
parameter estimation algorithm for the EMVS array.

The rest of this paper is organized as follows. Section 2 describes the received signal
model of EMVS array based on BCD modeling; Section 3 develops the algorithm based on
rank-(L1, L2, ·) BCD for 2-D AOA estimation; Section 4 presents numerical simulations
to verify the proposed algorithm; the last section concludes this paper.

2. BCD Modeling for EMVS Array. Consider an L-shaped EMVS array, as shown
in Figure 1, which consists of a couple of orthogonal uniform linear arrays and each has
M sensors. For partially polarized electromagnetic waves [3, 4], the received signal model
can be expressed as

x (t) = (Ax ⊙ Ψ) sT (t) + nx (t) , (1)

z (t) = (Az ⊙ Ψ) sT (t) + nz (t) , (2)

where the operator ⊙ denotes the Khatri-Rao product with block form [17]; the source

signal is s (t) =
[
s̃
(1)
1 (t) , s̃

(1)
2 (t) , . . . , s̃

(K)
1 (t) , s̃

(K)
2 (t)

]
∈ C1×2K , where

(
s̃
(k)
1 (t) , s̃

(k)
2 (t)

)
denotes the k-th signal complex envelope; nx (t) ∈ CM×1 is the additive white Gaussian
noise (AWGN) vector; Ax = [ax,1, ax,2, . . . , ax,K ] ∈ CM×K is the steering matrix of the
subarray along x-axis. Let d denote the array element spatial interval and define the
spatial frequency αk = −2πd

λ
cos ϕ′

k, in which λ is the wavelength of source signal; then

we have ax,k =
[
1, ejα1 , ejα2 , · · · , ej(M−1)αK

]T
. Ψ = [Θ1, . . . ,ΘK ], where Θk ∈ R6×2 is

the polarization parameter matrix. The signal model of the subarray along z-axis has the
same form as that along x-axis. Without loss of generality, the argument t is omitted in
the following discussions for simplicity.

Figure 1. L-shaped array configuration of EMVS array

Merge measurement with the both subarrays [4], and then received signal model can
be expressed as

y =
K∑

k=1

Ak ⊗ Θks
T
k + n, (3)

where ⊗ denotes the Kronecker product. The corresponding matrix form is

Y = (A ⊙ Ψ) ST + N , (4)
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in which A = [A1, . . . , AK ] with Ak = blockdiag (ax,k,az,k), where blockdiag (·) denotes

a block diagonal matrix; S =
[
ST

1 , . . . , ST
K

]
with Sk =

[
sk (1)T , . . . , sk (N)T

]
; N is the

corresponding AWGN matrix. Note that (4) is a rank-(L1, L2, ·) BCD model [17], where
L1 = L2 = 2. In this paper, the calligraphic capital letter is utilized to denote the tensor
data, and then the received signal model can be rewritten as

Y =
K∑

k=1

Sk ×1 Ak ×2 Θk + N , (5)

where ×n denotes the mode-n product between tensor and matrix, in which mode is
considered as the order of tensor data [8]. Sk ∈ CL1×L2×N is the k-th source signal, of
which the mode-3 matricization is ST

k , i.e., ST
k = [Sk](3).

Next, we investigate whether the rank condition of each factor is satisfied in (5). Note

that the steering matrix {Ak}K
k=1 ∈ CML1×L1 is of full column rank when M ≥ 1. The

same is true for {Θk}K
k=1 ∈ R6×L2 when L2 < 6. Define the mode-n rank of a tensor as

the rank of its mode-n matricization [9]. For {Sk}K
k=1 ∈ CL1×L2×N , the size of mode-1

matricization is (L1 × NL2) and (L2 × NL1) for mode-2. Thus the mode-1 and mode-

2 rank of {Sk}K
k=1 are L1 and L2, respectively, when snapshots N is sufficiently large.

Consequently, the rank condition of each factor in (5) can be satisfied if
M ≥ 1,

L2 ≤ 6,

N ≥ max
(⌈

L1

L2

⌉
,
⌈

L2

L1

⌉)
.

(6)

For the L-shaped array in this paper, on each subarray the number of sensors M > 1
must be true. And since L1 = L2 = 2, for either single or multiple snapshots, Equation
(5) will be valid according to (6).

3. AOA Estimation Algorithm. Given the rank-(L1, L2, ·) BCD model (5) with addi-

tive noise, the proposed algorithm is to acquire the estimation of factor matrices {Ak}K
k=1,

{Θk}K
k=1 from the received signal Y and obtain the estimation of spatial frequency {αk}K

k=1.
This paper adopts the minimum mean square error (MMSE) criterion [18],

min
Âk,Θ̂k

∥∥∥Y − Ŷ
∥∥∥2

F
, k = 1, 2, . . . , K,

s.t. Ŷ =
K∑

k=1

Ŝk ×1 Âk ×2 Θ̂k,

(7)

where ∥·∥F denotes the Frobenius norm. Several algorithms can be employed to solve the
above problems [18, 23, 24]. The typical one is alternating least squares (ALS) [8, 24].
With fixed two components of A,Ψ,S in each iteration, the remaining one is updated by
least squares approach, and then the same scheme is repeated in turn until the convergence
condition is satisfied.

For the array manifold configuration in this paper, Ak can be parted as Ak =
[
AT

k,1,

AT
k,2

]T
, where Ak,1 = [ax,k,0], Ak,2 = [0, az,k]. Because the BCD estimation result and

steering matrix have the same column space [17], Âk is parted as Âk =
[
ÂT

k,1, Â
T
k,2

]T

in

the same way. Then we have

Âk,1 = [ax,k,ax,k] · diag
(
[Γk]1,:

)
, (8)

Âk,2 = [az,k,az,k] · diag
(
[Γk]2,:

)
. (9)
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The above equations indicate that Âk,m is a rank-1 matrix and has the same column
space as the steering vector. Hence the spacial frequency can be estimated by subspace
methods. Giving the singular value decomposition (SVD) of Âk,m,

Âk,m = Uk,mΣk,mV H
k,m, m = 1, 2, (10)

the left singular vector uk,1 corresponding to the maximum singular value can be obtained.
Take the first and last (M − 1) rows of uk,1, denoted as ua and ub, to construct Uab =
[ua,ub]. Applying eigen value decomposition of UH

abUab, i.e., UH
abUab = WΛW H , where

W =

[
w1,1 w1,2

w2,1 w2,2

]
∈ C2×2, (11)

yields the estimation of spacial frequency α̂k = ∠
(
−w1,2

w2,2

)
, where ∠ (·) denotes the phase

angle of a complex variable. Thus the estimation of the arrival angle on the array along
x-axis can be obtained, ϕ̂′

k = arccos
(−α̂kλ

2πd

)
. The same method can be used to get the

estimation of the elevation angle θ̂k. After obtaining the estimation of ϕ′
k and θk, the

azimuth angle ϕk can be estimated directly, ϕ̂k = arccos
(

cos ϕ̂′
k

sin θ̂k

)
.

Since Âk includes the steering vector information on both subarrays and the type-2
BCD possesses the uniqueness [17, 18], the estimation of azimuth and elevation angles
accomplish the matching pairing automatically. It should be noted that even if the array
manifold is arbitrarily configured and no longer has the Vandermonde structure, the
spacial frequency can still be estimated by utilizing the one dimensional spectral peak
search method.

4. Numerical Simulations and Discussion.

4.1. Realization of 2-D AOA estimation. In this section, two simulation experiments
are demonstrated for proving the validation of the proposed method, as shown in Figure 2.
The experimental scenario is consistent with the received signal model (5). The number
of sensors in the subarray is assumed as M = 5; the number of source signals K = 2; the
number of snapshots N = 200. The Monte-Carlo independent trials is L = 500.

In the first experiment, two groups of the AOAs are (ϕ1, θ1) = (100◦, 65◦) and (ϕ2, θ2) =
(120◦, 45◦); the SNR range is −3dB ∼ 15dB. The result indicates that the proposed algo-
rithm has the good estimation accuracy even if the SNR is low, as shown in Figure 2(a).
In the second experiment, the SNR is fixed at 5dB and two groups of AOA are selected as
(ϕ1, θ1) = (100◦, 65◦), (ϕ2, θ2) = (ϕ1 + ∆, θ1 + ∆), where ∆ ∈ [1◦, 20◦] denotes the angular
separation. As shown in Figure 2(b), the AOA estimation can be fully distinguished when
the angular separation is larger than 3◦. Even if the separation degree is very small, the
paired angles can still be estimated correctly with a high probability.

4.2. Performance comparison. The comparison of the proposed algorithm with three
existing methods has been investigated in this section, which shows the performance in
both root mean square error (RMSE) and detection probability. The reference methods
include classic subspace methods, i.e., MUSIC [1], ESPRIT [2], and the CPD-based 2-D
AOA estimation method [11]. The parameter settings are the same as those in Section
4.1.

4.2.1. RMSE. First, we investigate the RMSE which is defined as
√

1
L

∑L
l=1(ϵϕ(l)2+ϵθ(l)2),

where ϵϕ(l) = 1
K

∑K
k=1

∣∣∣ϕ̂k(l) − ϕk

∣∣∣, ϵθ(l) = 1
K

∑K
k=1

∣∣∣θ̂k(l) − θk

∣∣∣, in which
(
ϕ̂k(l), θ̂k(l)

)
are the estimation values of k-th azimuth-elevation angles for l-th Monte-Carlo trial.

The Cramer-Rao lower bound is defined as
√

1
K

∑K
k=1 (CRB (ϕk) + CRB (θk)), where
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(a) Under different SNRs

(b) Under different angular separations

Figure 2. Azimuth-elevation scatterplots, by 500 Monte-Carlo trials
(M = 5, K = 2, N = 200)
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CRB (ϕk) and CRB (θk) are the diagonal elements of CRB matrix [3], corresponding to
the parameters ϕk and θk, respectively.

The RMSE curves versus SNRs and angular separations are shown in Figure 3. Of
all the methods, the RMSE of the proposed algorithm is the lowest for the whole range
of SNR and angular separation according to the results. The two tensor-decomposition-
based algorithms are better than those matrix-based subspace algorithms, since tensor
decomposition algorithm can make the best of the multiway structure information in
received signal. As the analysis in Section 3, the BCD algorithm can obtain the steering
matrix Ak directly, and then automatically achieve the matching pair of the azimuth and
elevation angles. Therefore, the detection probability of BCD is higher than CPD. The
results in Section 4.2.2 provide the similar conclusion. It is noted that RMSE curves vary
with the steeper slope as the separation degree less than 5◦, which reveals the sensitivity
to angular separation within such interval. Even under the demanding conditions, the
proposed algorithm has the better performance.

4.2.2. Detection probability. The detection probability measures the success rate of pair-
matching for two groups of azimuth-elevation angles. In this section, detection probabil-
ities of the four methods are compared in accordance with two simulation experiments,
as shown in Figure 4. The results show that the proposed algorithm maintains the high-
est success rate of pair-matching under the conditions of low SNR and small angular

Figure 3. RMSE versus SNRs and angular separations, by 500 Monte-
Carlo trials (M = 5, K = 2, N = 200)

Figure 4. Detection probability versus SNRs and angular separations, by
500 Monte-Carlo trials (M = 5, K = 2, N = 200)
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separations. For example, when SNR = −3dB, the detection probability of the proposed
algorithm reaches to 88%, increased by 69%, 57% and 35% compared with ESPRIT (52%),
MUSIC (56%) and CPD (65%), respectively. When the angular separation ∆ = 1◦, the
success rate of proposed algorithm is 84%, increased by about 83%, 61% and 25% com-
pared with ESPRIT (46%), MUSIC (52%) and CPD (67%), respectively. This benefit by
automatic angles pairing resulted from the estimating steering vectors and the decomposi-
tion uniqueness of BCD, which makes the proposed algorithm obtain the better detection
ability and achieve the best estimation performance under the severe environment.

5. Conclusion. This paper investigates the BCD tensor modeling in parameter estima-
tion of EMVS array. For the partially polarized signal, a rank-(L1, L2, ·) BCD-based
algorithm is developed to achieve the 2-D AOA estimation. This algorithm can fully
make use of the multiway structural information of the received signal and automatically
obtain the paired azimuth and elevation angles. Several numerical experiments are car-
ried out to verify the effectiveness of the algorithm. The experiment results show that
both the estimation accuracy and detection probability of this algorithm are superior to
the subspace methods based on matrix decomposition and CPD method based on tensor
decomposition. The proposed algorithm manifests robust and good performance under
severe conditions such as low SNR and small angular separations. The future work is to
study the case of coherent signals, which is common in the practical application.
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