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Abstract. In non-cooperative communication fields, modulation parameter estimation
is the key step of subsequent processes, such as modulation classification and signal de-
modulation. As a powerful tool for frequency estimation, cyclic statistics are widely used
for symbol-rate estimation. In this work, inspired by the development of compressive
sensing (CS), we show that the cyclic statistics are compressible in the Fourier domain,
and hence, symbol-rate can be estimated from nonuniform low-rate samples of incom-
ing signal. As a result, the proposed compressive estimator can significantly relieve the
sampling and storage burdens on the implementation of an intercept receiver. We also
evaluate the performance of the proposed approach, and show that it is more effective
compared with the traditional estimator.
Keywords: Cyclic statistics, Compressive sensing (CS), Symbol-rate estimation

1. Introduction. Blind modulation parameter estimation is a technique to infer the
modulation parameters of the received signal without any prior knowledge. It plays a
crucial role in various applications such as software defined and cognitive radios, and
spectrum surveillance and management. In this paper we investigate the estimation of
symbol-rate of received signal, which is not only necessary for signal demodulating but also
a key parameter for modulation recognition. In recent years, blind symbol-rate estimation
based on cyclic statistics is adopted as a simple and efficient approach. The idea behind is
that, for linearly modulated signals, known as the cyclostationary signal, the second-order
cyclic spectrum exhibits a local maximum at the symbol-rate [1-3].

However, in this method, the higher-than-Nyquist rate sampling is often required to
induce the cyclostationarity and the reliable estimates of cyclic statistics, which imposes
the heavy computational and storage burdens on hardware implementation, especially
when the received signal has high bandwidth. To overcome these barriers, we appeal to
the recent emerging theory of compressive sensing (CS), which claims that a signal having
a sparse representation in some basis can be reconstructed from a small set of samples
collected via random linear projections. By exploiting the sparsity of cyclic statistics in the
Fourier domain and applying a rough CS recovery algorithm, we argue that the symbol-
rate can also be estimated with the second-order compressive cyclic spectrum derived
from a significantly small amount of nonuniform samples. Moreover, the nonuniform
samples can be directly acquired at a sensor, and a large reduction in the sampling and
computation costs can be achieved.

The rest of the paper is organized as follows. Section 2 provides the signal model. In
Section 3, we explain the sparsity of cyclic statistics, which validates the parameter esti-
mation in the framework of CS. Section 4 provides a weighting method for peak detection
applied in symbol-rate estimation. Simulation and performance analysis are presented in
Section 5. Finally, the conclusion is summarized in Section 6.
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2. Signal Model and Problem Statement. In practice, the received signal can be
expressed as a continuous-time signal:

x(t) = aej2πfct+θ
∑

k

skp(t − kT − t0) + n(t) (1)

where a is the signal amplitude, fc denotes the carrier frequency and is treated as the
intermediate frequency in this work, θ is the carrier phase, p(t) is the raised root cosine
(RRC) pulse, T represents the symbol period, which implies symbol-rate fb = 1/T . t0 is
the symbol timing offset, and n(t) is the additive Gaussian noise. sk is the kth complex
data symbol, and is assumed independent and identically distributed with zero mean and
unit variance (E{|sk|2} = 1).

Then, through a sampling process with the oversampling rate ρ, the corresponding
discrete-time signal is yielded as

x[l] = aejθej 2π
ρ

fcT l
∑

k

skp[l − kρ − l0] + n[l] (2)

where l0 = t0ρ/T , which is not necessarily an integer, and n[l] is the wide-sense stationary
complex noise sequence.

Our concerns can be described as follows: given {x[l]}N−1
l=0 , estimate symbol-rate of the

received signals without the parameters {a, θ, sk, l0}.

3. Analysis of Compressive Cyclic Statistics. For the purpose of making this paper
self-contained, we first provide some definitions of involved statistical functions.

The nth-order/q-conjugate temporal moment (TM) is defined by

rx(t, τ )n,q = E

{
n∏

i=1

x(∗)i(t + τi)

}
(3)

where E{·} is the expectation operation, and (∗) represents the one of q conjugations. To
illustrate the underlying periodicities, the temporal cyclic moment (TCM) is given by

rα
x (τ )n,q = lim

T→∞

1

T

∫ T/2

−T/2

rx(t, τ )n,qe
−j2παtdt, rα

x (τ )n,q ̸= 0 (4)

where α is the impure nth-order cycle frequency (CF), and τ = [τ1, . . . , τn] is the delay-
vector. It is obvious that the set of values of α for which rα

x (τ ) ̸= 0 is denumerable.
Correspondingly, when coping with finite length of samples, the TCM can be estimated

as

r̃α
x [σ]n,q =

1

N

N−1∑
l=0

px[l, σ]n,qe
−j2παl, r̃α

x [σ]n,q ̸= 0 (5)

where σi = τiρ/T , and px[l, σ] denotes the nth-order lag product of the input x[l], i.e.,
px[l, σ]n,q =

∏n
i=1 x(∗)i [l + σi].

By representing quantities {px[l, σ]n,q}N−1
l=0 by vector px, we have

η = Φpx (6)

equivalently,

px = ΦHη (7)

where Φ is the N -point discrete Fourier transform (DFT) matrix, η is the corresponding
Fourier coefficient vector, and (·)H denotes the conjugate transpose operator. Evidently,
we can infer that the non-zero elements of η are actually the TCMs, and their index
implies the CFs. However, in practice, the non-zero elements of η, also appear at other
frequencies besides the CFs, due to the nonlinear transformation and the finite number of
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samples. Fortunately, TCMs are usually extremely larger than the others; thus, we can
still claim that TCMs are compressible in Fourier domain [4].

Thus, we consider applying the CS approach to the field of cyclic statistics. Assume
that received signal x(t) undergoes a compressive sampling system, and we obtain the
nonuniform sample vector xc, where xc = {xc[0], . . . , xc[M − 1]}. The sampling process
is actually implemented by a matrix multiplication: xc = Ψx, where Ψ ∈ {0, 1}M×N ,
M ≪ N , is the measurement matrix, and x = {x[0], . . . , x[N − 1]} is the uniform sample
vector. It should be noted that Ψ is a binary matrix with only one single 1 in a random
position of each row; moreover, in each column, there exists at most one 1. Clearly,

we deduce pc = Ψpx, where pc[m, σ]n,q =
∏n

i=1 x
(∗)i
c [m + σi]. From (7), it holds that

pc = ΨΦHη. As a consequence, the problem is formulated as a typical CS problem

minimize∥η̂∥0 subject to pc = Aη̂ (8)

where A = ΨΦH.
Nevertheless, to achieve the recovery of η with high probability, the matrix A need

satisfy the so-called restricted isometry property (RIP). By examining the product A =
ΨΦH, it is easy to see that A is actually a submatrix consisting of M random rows of
the inverse DFT matrix ΦH. When the number of measurements M is larger than a fixed
bound provided by [5], which is dependent of the length and sparsity of η, the RIP is met
and the exactly recovery of η can be achieved by solving a convex optimization problem
or by using a variety of greedy iterative algorithms. Besides, the ratio M/N is defined as
the compression factor denoted by γ.

Since our goal is equivalent to estimating the frequencies at which certain cyclic sta-
tistics locate, it seems not necessary to recover the vector η accurately. By borrowing
the idea of compressive signal processing (CSP) [6], which is applied to fields of detec-
tion, classification and estimation problems without reconstructing the full-scale signal,
we define the simple estimate of η [7]

η̂ = AHpc = ΦΨHpc (9)

which means that η̂ can be computed by zero-padding pc (creating a length-N vector
containing the M entries of pc at the nonuniform sample locations) and taking the FFT
of this zero-padded vector.

Result in [8] guarantees the accuracy of this estimate. Although η cannot be exactly
sparse in practice, our experimental results confirm that η̂ still provides a suitable, efficient
estimate of η in the proposed method. For example, with the compression factor γ = 0.1,
the curve in Figure 1(b) shows |η̂|, while the curve in Figure 1(a) shows |η|. We see that
positions of peaks in the right-hand curve, although weaker, coincide with the positions
of the peaks in the left-hand curve respectively. It is noted that in this context, we assign
the value of 0-frequency component of spectrum to 0 in each plot for the sake of clarity.

4. Estimation of Symbol-Rate. As revealed in previous studies, we apply the second-
order cyclic spectrum to symbol-rate estimation, dominant peaks of which are actually
the second-order TCMs with τ = 0 and q = 1. The second-order cyclic spectrum of
received sequence x[l] is estimated by

r̃α
x [0]2,1 =

1

N

N−1∑
l=0

x[l]x∗[l]e−j2πlα (10)

Substituting (2) into (10), the ith frequency component of cyclic spectrum can be ex-
pressed as

r̃αi
x [0]2,1 =

a2

ρ

∑
k

P [k/ρ]e−j2πkl0/ρδ

[
αi −

k

ρ

]
+ σ2δ[αi] (11)
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where δ[·] denotes the Kronecker deltas, P [·] is the DFT of p[·], and σ2 = E{|n[l]|2}. It is
apparent that if and only if αi = k/ρ, r̃αi

x [0]2,1 ̸= 0, which means that the prominent peak
of cyclic spectrum appears at αi = k/ρ. Further, in the scenario of using bandlimited filter,
i.e., r̃α

x [0]2,1 ≈ 0 for k > 1, r̃α
x [0]2,1 should have prominent peaks at −1/ρ, 0, 1/ρ. Since

1/ρ is actually the normalized symbol-rate, our problem can be considered as detecting
the non-zero peak located at the positive axis.

However, as shown in Figure 1, whether we estimate the second-order cyclic moments
from uniform or nonuniform samples, due to the nonlinearly processed signal, simply
choosing the peak with the highest level on the right side of DC component would lead to a
false estimate of the symbol-rate, since r̃α

x [0]2,1 at frequencies near 0 may take rather large

values that can be compared with r̃
1/ρ
x [0]2,1. Even so, r̃

1/ρ
x [0]2,1 is a local maximum at least.
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(a) Scenario of uniform samples
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(b) Scenario of nonuniform samples

Figure 1. FFT of second-order moment and its estimate obtained from
nonuniform samples
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In [9], the desired peak was detected in a narrowed search interval, which was determined
by a roughly estimated 3 dB bandwidth. In [10], the cyclic spectrum was weighted by a
simple nonlinear operation, as a result, the local maximum was converted into a global
maximum; however, an interval decided by 3 dB bandwidth was still introduced to reduce
search complexity. In this work, we attempt to design a novel weighting approach to make
the desired peak a global maximum without 3 dB bandwidth estimation.

It is worth noting that the peak r̃
1/ρ
x [0]2,1 is the superior over neighboring frequencies

even for a low SNR and a small excess bandwidth signal, and meanwhile, the compared
components tend to concentrate at the low frequencies far from 1/ρ. Based on the analysis
above, with the 0-frequency component omitted (assigned to be 0), we first divide the
cyclic spectrum into Ns segments, and the number of components in each segment should
be appropriately chosen. For each segment, we define an indication function as

Qv =
maxi |r̃αi

x [0]2,1|
1/Ls

∑vLs

i=(v−1)Ls+1 r̃αi
x [0]2,1

(12)

where v ∈ {1, 2, . . . , Ns}, Ls denotes the number of components in each segment, i ∈
[(v − 1)Ls + 1, vLs] and we have Ns = ⌈NFFT /Ls⌉, where NFFT denotes the FFT-length,
and ⌈z⌉ denotes the smallest integer larger than z. It is also noted that the length of
the last segment may equal to W = NFFT mod Ls when NFFT /Ls is not an integer, and

correspondingly, Qv = maxi |r̃
αi
x [0]2,1|

1/W
∑(Ns−1)Ls+W

i=(Ns−1)Ls+1
r̃

αi
x [0]2,1

, v = Ns.

Subsequently, we replace the maximum component of vth segment by the value of Qv

at the same location with the others assigned to zero. Hence, we can obtain the weighted
spectrum. As analysed in Section 3, the aforementioned process can be performed with
the compressive spectrum as well, and as shown in Figure 2, it is easy to observe that
the specified local maximum of compressive spectrum becomes the global maximum of
weighted spectrum, which indicates the symbol-rate.

5. Implementation and Simulation Results.

5.1. Implementation. Based on the discussions in previous sections, the whole process
of symbol-rate estimation from nonuniform samples is illustrated in Figure 3. First,
nonuniform samples are acquired by passing the IF signal through a low-rate nonuniform
sample-and-hold (s/h) device which is driven by a common nonuniform clock (NU CLK)
dictating the sample times. For more details of the s/h device, one can refer to [7].
Then, convert nonuniform samples into complex values through the Hilbert transform and
compute the compressive cyclic spectrum by taking a zero-padding FFT. Subsequently,
we obtain the weighted spectrum by the strategy of segment division, and the desired
peak emerges, which indicates the symbol-rate.

5.2. Simulation and performance evaluation. In order to validate the proposed al-
gorithm and evaluate its performance, we consider signals belonging to four different
modulation formats, such as QPSK, 32PSK, 16QAM and 64QAM. In simulations, each
IF signal is generated with oversampling factor ρ = 300. The carrier frequency and
symbol-rate of each signal are 5 MHz and 122 KHz respectively. The roll-off factor of
RRC filter is set to 0.35. The channel conditions are set with SNR in the range of 5 dB
to 25 dB. The number of symbols is assumed to be 250. For each modulation, 100 Monte
Carlo simulations are run and we adopt the normalized mean square error (NMSE) as a
consistent performance metric, which reflects both the bias and the variance of a symbol-

rate estimate. The NMSE is defined as E

{(
fb − f̂b

)2

/f2
b

}
and it is converted into dB

scale for the sake of intuitive clarity.
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Figure 2. (a) Nonweighted compressive cyclic spectrum, where the
symbol-rate peak is a local maximum. (b) Weighted compressive cyclic
spectrum for the same environment as (a), where the symbol-rate peak is a
global maximum.

In our simulations, for each modulation, the performance of classical method in the
scenario of uniform samples and the proposed CS-based method with compression factor
γ = 0.1 is compared. Figure 4 shows the performance of symbol rate estimation versus
SNR. It is observed that the NMSE decreases as the SNR increases in the case of nonuni-
formly sampling. For QPSK and 16QAM signals, the NMSE of CS-based method declines
sharply, when SNR achieves 10 dB, whereas the classical method always exhibits a robust
performance over the whole range of SNR. It means that for QPSK and 16QAM signals,
the CS-based method satisfies an acceptable performance only when the SNR is above
10 dB. However, for the other signals, the proposed method compares to the classical
method when the SNR is above 5 dB. In general, the CS-based method can be recognized
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Figure 3. Flowchart of the symbol rate estimation
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Figure 4. Performance of the symbol rate estimation

as an alternative way for symbol-rate estimation when the SNR is not too low, and, most
of all, only 1% of samples are required in contrast to classical method.

6. Conclusion. Inspired by the development of CS theory, we propose a new method
for the symbol-rate estimation of received signal from extremely small set of nonuniform
samples, which significantly reduces the computation and storage burdens of hardware
implementation. We first present a novel approach to generating compressive cyclic spec-
trum from nonuniform samples, and then provide a simple weighting scheme for identifying
the required peak indicating the symbol-rate in the estimated spectrum. Our simulation
results confirm that the proposed method is indeed effective and feasible, although it
requires somewhat higher SNR compared to the classical method.
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