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Abstract. In this research study, chaos synchronization problem between T and Lü,
two chaotic systems, is addressed. The parameters of the drive T chaotic system are
considered unknown. An adaptive nonlinear feedback control law and a parameter es-
timation law are introduced based on the Lyapunov stability theorem and the adaptive
control theory. The validity of the proposed method is proved by the Lyapunov stability
theorem. Furthermore, some numerical simulations are given to show the effectiveness
of the theorical discussions and the proposed method.
Keywords: T chaotic system, Lü chaotic system, Parameter identification, Lyapunov
stability theorem

1. Introduction. Sensitivity to the initial conditions is the main property of the chaotic
systems. Any small differences in the initial trajectories of the system state variables will
make exponentially huge differences in the output of the system state variables. This
feature makes the control and the synchronization of the chaotic systems a challenging
subject and hence many applications would arise, due to these features, such as: elec-
trical engineering, physics, chemistry and secure communication. Generally, chaos is an
undesirable phenomenon in some situations in view of the fact that it generates some
irregular oscillations. Therefore, chaos control and synchronization of chaotic systems
have attracted more attention from scientists and researchers. To this end, many types
of synchronization methods have been introduced to explain the complex behavior of the
chaotic systems. Active method [1,2], Adaptive method [3-5], backstepping method [6,7],
generalized method [8], phase method [9,10], sliding method [11-13], projective method
[14-17] and modified projective synchronization [20-23] are some of them. Among these
methods, adaptive method is a common control method, which plays an important role
in many other synchronization methods. In this paper, adaptive synchronization problem
of the T and Lü chaotic systems was firstly addressed. Chaos synchronization is carried
out by introducing a new adaptive nonlinear feedback control law.

Since the system parameters are usually uncertain or unknown, adaptive synchroniza-
tion methods have to be utilized instead of the active ones. Therefore, this paper con-
centrates on adaptive control procedure. During adaptive control implementation, the
unknown parameters of the chaotic system will be estimated, in most of the published
papers of synchronization between chaotic systems.

In this paper, some results on adaptive synchronization of T chaotic system and the
Lü chaotic system are derived. Section 2 gives some preliminaries and mathematical
modeling. Then, the chaos synchronization between T chaotic system as the leader chaotic
system and the Lü chaotic system as the response system is addressed in Section 3. An
adaptive control law and a parameter estimation law are obtained based on the Lyapunov
stability theorem and the adaptive control. Numerical simulations are presented for each
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section of 2 and 3 in order to verify the theorical analysis in Section 4. Finally, concluding
remark is given in Section 5.

2. Mathematical Modeling and Preliminaries. In this section, some mathematical
modeling of the T and Lü chaotic systems are investigated. T chaotic system was recently
introduced in [18], which is constructed based on the three-dimensional dynamical system.
T system can be presented as follows:

ẋ1 = α1(x2 − x1)

ẋ2 = (α2 − α1)x1 − α1x1x3 (1)

ẋ3 = x1x2 − α3x3

where ẋ1, ẋ2 and ẋ3 represent the time derivatives of the system state variables x1, x2 and
x3, respectively, and a, b and c stand for parameter of the system. When a = 2.1, b = 30
and c = 0.6, the behavior of the T system (1) is chaotic. The chaotic behavior of the T
system (1) is shown in Figure 1 for initial state variables x1 = 4.3, x2 = 7.2 and x3 = 5.8.

(a) (b)

(c) (d)

Figure 1. Time portrait of the T chaotic system

Lü chaotic system is another chaotic system firstly presented in [19] with three-dimension
dynamical system as follows:

ẏ1 = β1(y2 − y1)

ẏ2 = β2y2 − y1y3 (2)
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ẏ3 = y1y2 − β3y3

where y1, y2 and y3 stand for the state variables of system, and β1, β2 and β3 are the
parameters of system. The chaotic behavior of the Lü chaotic system (2) is shown in
Figure 2, with system parameters: β1 = 36, β2 = 30 and β3 = 20, and the initial values
for the system state variables as: y1 = 5, y2 = 2 and y3 = 30.

(a) (b)

(c) (d)

Figure 2. Time portrait of the Lü chaotic system

3. Adaptive Synchronization. Consider the T chaotic system presented in (1), as the
drive chaotic system. Then, the follower chaotic system can be presented using the Lü
chaotic system (2), as follows:

ẏ1 = (α1 + ∆α1)(y2 − y1) + u1

ẏ2 = (α2 + ∆α2)y2 − y1y3 + u2 (3)

ẏ3 = y1y2 − (α3 + ∆α3)y3 + u3

where u1, u2 and u3 indicate the three adaptive feedback controllers, which have to be
designed. ∆α1, ∆α2 and ∆α3 denote the disparity amount of unknown system parameters
α1, α2 and α3 in the leader chaotic system (1), respectively.

Assume the synchronization error between the leader and the follower chaotic systems
(1) and (2) as follows:

e1 = y1 − x1
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e2 = y2 − x2 (4)

e3 = y3 − x3

The dynamical representation of system errors (4) can be described as:

ė1 = ẏ1 − ẋ1

ė2 = ẏ2 − ẋ2 (5)

ė3 = ẏ3 − ẋ3

Definition 3.1. For the drive T system (1) and the response Lü system (3), it is said
that if an appropriate feedback controller law and a parameter estimation law are achieved,
then the chaos synchronization would occur and synchronization errors would be zero as
time tends to infinity, namely:

limt→∞ |yi − xi| = 0 ∀i = 1, 2, 3 (6)

An appropriate control law and a parameter estimation law are designed in the following
theorem to provide the leader and the follower synchronization practice.

Theorem 3.1. The T chaotic system (1) with the system state variables x1, x2 and x3 with
system parameters a, b and c would be synchronized with the response Lü chaotic system
(3), and assuming the adaptive synchronization errors defined in (4) and the control law
and the parameter estimation law defined as follows:

u1(t) = −(α1 + ∆α1)(y2 − y1) + (α1 + ∆α1)(x2 − x1) − k1e1

u2(t) = −(α2 + ∆α2)y2 + y1y3 + ((α2 + ∆α2) − (α1 + ∆α1))x1x3 − k2e2

−(α1 + ∆α1) (7)

u3(t) = −y1y2 + (α3 + ∆α3)y3 + x1x2 − (α3 + ∆α3)x3 − k3e3

and

∆′α1 = −e1(x2 − x1) + e2x1x3 − ϕ1∆α1

∆′α2 = −e2x1 − ϕ2∆α2 (8)

∆′α3 = +e3x3 − ϕ3∆α3

Proof: Proving the system errors stability provides a sufficient condition for synchro-
nization task between the drive T chaotic system (1) and the response Lü chaotic system
(3). To this end, a typical Lyapunov candidate function is given, which uses the system
state variables errors and the errors of the system parameter.

Let us consider the Lyapunov candidate function as follows:

V (t) =
1

2

(
e2
1 + e2

2 + e2
3 + (∆α1)

2 + (∆α2)
2 + (∆α3)

2
)

(9)

It is clear that V is positive definite. The time derivative of the Lyapunov candidate
function (9) can be described as follows:

V̇ = e1ė1 + e2ė2 + e3ė3 + ∆α1∆
′α1 + ∆α2∆

′α2 + ∆α3∆
′α3 (10)

With considering the dynamical representations of drive and response systems (1) and
(3), the dynamical error system (5), the proposed controller (7) and the parameter esti-
mation (8), the dynamical Equation (10) can be simplified as follows:

V̇ = −k1e
2
1 − k2e

2
2 − k3e

2
3 − ϕ1(∆α1)

2 − ϕ2(∆α2)
2 − ϕ3(∆α3)

2 (11)

When ki (i = 1, 2, 3) and ϕi (i = 1, 2, 3) are positive constants, then, it is clear that the
dynamical representation of the Lyapunov candidate function (10) is negative definite.
This means that the anticipated synchronization between the leader T chaotic system
(1) and the response Lü chaotic system (3) will be achieved, based on the Lyapunov
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stability theory and adaptive control theory. Therefore, the theorem is proved, namely,
lim |ei(t)| → 0 as time tends to infinity.

4. Numerical Simulations. In this section, some numerical results related to the syn-
chronization of drive T chaotic system (1) and the response Lü chaotic system (3) are
presented to clarify the effectiveness of the theorical discussions given at the previous
section. A Matlab implementation is carried out to solve the drive-response system syn-
chronization with the time step of the size 10−7.

Runge-Kutta is used as an iterative method for solving the synchronization problem
with the T chaotic system (1), the Lü chaotic system (3) with the adaptive control (7)
and the estimated parameter calculated at (8).

The unknown parameters of the T chaotic system, as the drive system are initially
chosen as: a = 2, b = 5 and c = 1, and the initial values for the drive chaotic system (1)
are taken as x1(0) = 3, x2(0) = 2, and x3(0) = 7. In addition, the initial values of the

Figure 3. Motion trajectories of the state variables along the time

Figure 4. The disparity amount of the system parameters estimations
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response Lü system (3) are selected as: y1(0) = 4, y2(0) = 1 and y3(0) = 8. The gain
constants are set as k1 = 1.5, k2 = 1.5, k3 = 1.5 and also ϕ1 = 2, ϕ2 = 2 and ϕ3 = 2.
Finally we have supposed the initial values of the estimation parameters as: ∆α1 = 0.5,
∆α2 = 0.7 and ∆α3 = 1.2.

The effectiveness of the proposed control method for synchronization of the T chaotic
system (1) and the Lü chaotic system (3) with unknown drive system parameters is shown
in Figures 3 and 4. Figure 3 shows that the state variables of the system (1) converge to
zero. In addition, Figure 4 exhibits that the distance between drive unknown parameters
and its estimation values converges to zero.

5. Conclusion. In this paper, an adaptive method for synchronization of T chaotic sys-
tem as the drive system and the Lü chaotic system as the response system is studied. The
parameters of the drive chaotic system are considered unknown. An appropriate feedback
control law and a parameter estimation law are derived based on the Lyapunov stability
theorem and the adaptive control theorem. Then, numerical simulations are carried out
to verify the effectiveness method. As it can be seen from the simulated results, the an-
ticipated drive-response synchronization is achieved and the synchronization errors of the
system parameters and also errors from the disparity amount of system parameters tend
to zero as time goes to the infinity.
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