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Abstract. Almost difference set pairs have intersting applications in digital commu-
nications and coding theory. In this paper, we give a conclusion about the cyclotomic
numbers of Whiteman generalized cyclotomy and construct new famillies of almost dif-
ference set pairs with period N = pq based on Whiteman generalized cyclotomic classes
and Chinese Remainder Theorem, where gcd(p, q) = e.
Keywords: Almost difference set pairs, Whiteman generalized cyclotomy, Perfect dis-
crete signal

1. Introduction. Sequences pairs have a wide range of applications such as Code Di-
vision Multiple Access (CDMA) systems, radar, signal processing and source coding in
spectrum communication systems [1]. Almost Difference Set Pairs (ADSPs) are a math-
ematical tool to construct sequence pairs, which are presented in [2] for the first time. It
is proven that an ADSP is equivalent to a binary sequence pair with three-level autocor-
relation. However, the set H of the ADSPs in [2] only contains two elements, and they
failed with the construction of ADSPs.

The known construction of ADSPs with perfect performance are the following.
1) Several kinds of ADSPs with period N ≡ 0 (mod 4) are constructed in [3] using the

ideal two-level correlation binary sequence pairs.
2) The ADSPs on two times prime v of residual class ring Z2v are constructed in [4]

based on cyclotomic classes and Chinese Remainder Theorem.
3) Classes of ADSPs of period N = 4f + 1 and N = 6f + 1 are constructed in [5] by

means of cyclotomy.
So far only a small number of classes of ADSPs has been discovered and it is far from

meeting the needs of practical applications. In this paper, we will give new famillies of
almost difference set pairs with period N = pq, where gcd(p, q) = e using Whiteman
generalized cyclotomy [6]. In addition, this discovery expands the space for the existence
of almost difference set pairs, and provides a method for finding the ideal sequence pairs.

2. Preliminaries.

Definition 2.1. [2] Let Zv = {0, 1, . . . , v − 1} be the mod v residual class ring, and U ,
V be two subsets of Zv, |U | = k1, |V | = k2, e = |U ∩ V |; if t nonzero element a are in
Zv let the equation: x − y ≡ a(mod v) have exactly λ ways, where λ < t, (x, y) ∈ (U, V ),
and other v − 1 − t nonzero elements have exactly λ + 1 ways; then (U, V ) is called an
(v, k1, k2, e, λ, t) almost difference set pairs, denoted by ADSP (v, k1, k2, e, λ, t).

Definition 2.2. [7] Let v = pq where p and q are distinct odd primes with gcd(p, q) = e.
By the Chinese Ramainder Theorem, there exists a common primitive root g of both p
and q, such that
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ordv(g) = lcm{ordp(g), ordq(g)} = lcm{p − 1, q − 1} = (p − 1)(q − 1)/d

Let x be an integer satisfying x ≡ g (mod p) and x ≡ 1 (mod q). Whiteman defined the
generalized cyclotomic classes of order d over Zpq as follows:

Di = {gsxi (mod v) : s = 0, 1, . . . , d − 1, i = 0, 1, . . . , e − 1}
Clearly the cosets Di also depend on 0 ≤ i ̸= j ≤ e− 1 and Di

∩
Dj = 0. Concurrently

d = (p − 1)(q − 1)/e, d1 = (p − 1)/e, d2 = (q − 1)/e, P = {p, 2p, . . . , (q − 1)p}, Q =
{q, 2q, . . . , (p − 1)q}, R = {0}.

For example: Let N = 39, p = 3, q = 13, e = 2, and then D0 = {1, 2, 4, 8, 16, 32, 25, 11,
22, 5, 10, 20}, D1 = {14, 28, 17, 34, 29, 19, 38, 37, 35, 31, 23, 7}, P = {3, 6, 9, 12, 15, 18, 21,
24, 27, 30, 33, 36}, Q = {13, 26}, R = {0}. In addition, d = (p − 1)(q − 1)/e = 12, d1 = 1,
d2 = 6.

Lemma 2.1. [8] For P and
∪e−1

i=0 Di,∣∣∣∣(P + ω)
∩ e−1∪

i=0

Di

∣∣∣∣ =


q − 2, ω ∈

e−1∪
i=0

Di

0, ω ∈ P

q − 1, ω ∈ Q

Proof: In order to prove this lemma, we calculated the number of solutions of the
congruence x − y = ω (mod v) with x ∈ P , y ∈

∪e−1
i=0 Di.

Case 1: let ω be a fixed integer not divisible by p, and then the number of solutions of
the congruence equation is equal to 0.

Case 2: let ω be a fixed integer not divisible by q, and then the number of solutions of
the congruence equation is equal to q − 1.

Case 3: let ω be a fixed integer relatively prime by q, and then the number of solutions
of the congruence equation is equal to q − 2.

Combination of the above results yields the conclusion of the lemma.
According to the above Lemma 2.1, for P , Q,

∪e−1
i=0 Di, the possible values for the

cyclotomic numbers of Whiteman generalized cyclotomy are given in Table 1.

Table 1. The cyclotomic numbers of Whiteman generalized cyclotomy

ω ∈ P ω ∈ Q ω ∈
∪e−1

i=0 Di

P
∩

P q − 2 0 0

P
∩

Q 0 0 1

P
∩

R 1 0 0

Q
∩

Q 0 p − 2 0

Q
∩

R 0 1 0

P
∩∪e−1

i=0 Di 0 q − 1 q − 2

Q
∩∪e−1

i=0 Di p − 1 0 p − 2∪e−1
i=0 Di

∩∪e−1
i=0 Di (p − 1)(q − 2) (p − 2)(q − 1) (p − 2)(q − 2)

Lemma 2.2. For P and Di,

when d/e is odd, |(Di + ω)
∩

P | =

 d2 − 1, ω ∈ Di mod e

0, ω ∈ P
d2, ω ∈ else

when d/e is even, |(Di + ω)
∩

P | =

 d2 − 1, ω ∈ D(i+e/2)mod e

0, ω ∈ P
d2, ω ∈ else
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Proof: This is similarly proven as Lemma 2.1.
According to the above Lemma 2.2, when d/e is odd, the cyclotomic numbers of White-

man generalized cyclotomy of cosets P , Q, Di are given in Table 2. When d/e is even,
the cyclotomic numbers of Whiteman generalized cyclotomy of cosets P , Q, Di are given
in Table 3.

Table 2. The cyclotomic numbers if d/e is odd

ω ∈ P ω ∈ Q ω ∈ Di mod e ω ∈ else
Di

∩
P 0 d2 d2 − 1 d2

Di

∩
Q d1 0 d1 − 1 d1

Di

∩
R 0 0 1 0

Table 3. The cyclotomic numbers if d/e is even

ω ∈ P ω ∈ Q ω ∈ D(i+e/2)mod e ω ∈ else
Di

∩
P 0 d2 d2 − 1 d2

Di

∩
Q d1 0 d1 − 1 d1

Di

∩
R 0 0 1 0

3. New Construction of Almost Difference Set Pairs. In the section, we will con-
struct some kinds of almost difference set pairs using the Whiteman generalized cyclotomic
classes.

Theorem 3.1. Let U = Di

∪
P
∪

R, V = Di

∪
P ; (U, V ) is an ADSP (pq, d + q.d + q −

1, d + q − 1, (p2 + 2p + 1)/4, p − 1 + d) if and only if q = p + 2.

Proof: For i = 0, 1, . . . , e − 1, Di is a sampling transformation of D0. Therefore, we
only need to consider the case i = 0 to prove the above proposition. It is obvious that
|U | = d+q, |V | = d+q−1, e = |U

∩
V | = d+q−1. By Definition 2.1, we just need to prove

that there are p − 1 + d nonzero elements satisfying ∆ = (U + ω)
∩

V = (p2 + 2p + 1)/4.
For every nonzero element ω ∈ Z∗

N , let ∆ = (U + ω)
∩

V , and then

∆ =
(
D0

∪
P
∪

R + ω
)∩(

D0

∪
P
)

= (D0 + ω)
∩

D0 + (D0 + ω)
∩

P + (P + ω)
∩

D0

+(P + ω)
∩

P + ω
∩

D0 + ω
∩

P

= d − (D0 + ω)
∩

Q − (D0 + ω)
∩

D1

+(P + ω)
∩

D0 + (P + ω)
∩

P + ω
∩

P

According to Tables 1, 2, 3, we discussed four cases of nonzero element ω as follows
when d/e is odd.

a) when ω ∈ P ,

∆1 = d − (D0 + ω)
∩

Q − (D0 + ω)
∩

D1 + (P + ω)
∩

D0 + (P + ω)
∩

P + ω
∩

P

= d − (p − 1)/2 − (p − 1)(q − 1)/4 + 0 + q − 2 + 1 = (pq − 3p + 3q − 1)/4

b) when ω ∈ Q,

∆2 = d − (D0 + ω)
∩

Q − (D0 + ω)
∩

D1 + (P + ω)
∩

D0 + (P + ω)
∩

P + ω
∩

P

= d − 0 − (p − 1)(q − 1)/4 + d2 + 0 + 0 = (pq − p + q − 1)/4
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c) when ω ∈ D0,

∆3 = d − (D0 + ω)
∩

Q − (D0 + ω)
∩

D1 + (P + ω)
∩

D0 + (P + ω)
∩

P + ω
∩

P

= d − d1 + 1 − ((p − 1)(q − 1) − 3)/4 + d2 − 1 + 0 + 0 = (pq − 2p + 2q + 1)/4

d) when ω ∈ D1,

∆4 = d − (D0 + ω)
∩

Q − (D0 + ω)
∩

D1 + (P + ω)
∩

D0 + (P + ω)
∩

P + ω
∩

P

= d − d1 − ((p − 1)(q − 1) + 1)/4 + d2 + 0 + 0 = (pq − 2p + 2q − 3)/4

We can obtain ∆1 = ∆2 + 1 = ∆3 = ∆4 + 1, so p = q + 2, ∆ = (p2 + 2p + 1)/4.
Hence, we have ∆ = (U + ω)

∩
V = (p2 + 2p + 1)/4 for every nonzero element ω ∈

Q
∪

D1.
Similar to the previous case, we can obtain ∆ = (U + ω)

∩
V = (p2 + 2p + 1)/4 for

every nonzero element ω ∈ Q
∪

D1 when d/e is even.
In summary, (U, V ) constructed an ADSP (pq, d + q.d + q − 1, d + q − 1, (p2 + 2p +

1)/4, p − 1 + d) if and only if q = p + 2.

Example 3.1. When p = 5, q = 7,

U = {1, 17, 9, 13, 11, 12, 29, 3, 16, 27, 4, 33, 5, 10, 15, 20, 25, 30, 0}
V = {1, 17, 9, 13, 11, 12, 29, 3, 16, 27, 4, 33, 5, 10, 15, 20, 25, 30}

(U, V ) constructs an ADSP (35, 19, 18, 18, 9, 16).

Theorem 3.2. Let U = Di

∪
R, V = Q; (U, V ) is an ADSP (pq, d+1, p−1, 0, 1, p−1+d)

if and only if d1 = 2.

Proof: Similar to Theorem 3.1, we only consider the case i = 0. It is obvious that
|U | = d + 1, |V | = p − 1, e = |U

∩
V | = 0. By Definition 2.1, we just need to prove that

there are p − 1 + d nonzero elements satisfying ∆ = (U + ω)
∩

V = 1. For every nonzero
element ω ∈ Z∗

N , let ∆ = (U + ω)
∩

V , and then

∆ = (D0

∪
R + ω)

∩
Q = (D0 + ω)

∩
Q + ω

∩
Q

According to Tables 2, 3, we discussed four cases of nonzero element ω as follows when
d/e is odd.

a) when ω ∈ P ,
∆1 = (D0

∪
R + ω)

∩
Q = (D0 + ω)

∩
Q + ω

∩
Q = d1 + 0 = d1

b) when ω ∈ Q,
∆2 = (D0

∪
R + ω)

∩
Q = (D0 + ω)

∩
Q + ω

∩
Q = 0 + 1 = 1

c) when ω ∈ D0,
∆3 = (D0

∪
R + ω)

∩
Q = (D0 + ω)

∩
Q + ω

∩
Q = d1 − 1 + 0 = d1 − 1

d) when ω ∈
∪e−1

i=0 Di − D0,
∆4 = (D0

∪
R + ω)

∩
Q = (D0 + ω)

∩
Q + ω

∩
Q = d1 + 0 = d1

We can obtain ∆2 = ∆3, so d1 = 2, ∆ = 1.
Hence, we have ∆ = (U + ω)

∩
V = 1 for every nonzero element ω ∈ Q

∪
D0.

Similar to the previous case, we can obtain ∆ = (U + ω)
∩

V = 1 for every nonzero
element ω ∈ Q

∪
D0 when d/e is even.

From the above, (U, V ) constructed an ADSP (pq, d+1, p−1, 0, 1, p−1+d) if and only
if d1 = 2.

Example 3.2. When p = 5, q = 7,

U = {1, 17, 9, 13, 11, 12, 29, 3, 16, 27, 4, 33, 0}
V = {7, 14, 21, 28}

(U, V ) constructs an ADSP (35, 13, 4, 0, 1, 16).
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Theorem 3.3. Let U = Di

∪
Q
∪

R, V = Di

∪
Q; (U, V ) is an ADSP (pq, d + q.d + q −

1, d + q − 1, (p2 + 2p − 7)/4, p − 1 + d) if and only if q = p + 2.

Proof: Similar to Theorem 3.1, we only consider the case i = 0. It is obvious that
|U | = d + q, |V | = d + q − 1, e = |U

∩
V | = d + q − 1. By Definition 2.1, we just need to

prove that there are p−1+d nonzero elements satisfying ∆ = (U+ω)
∩

V = (p2+2p−7)/4.
For every nonzero element ω ∈ Z∗

N , let ∆ = (U + ω)
∩

V , and then

∆ =
(
D0

∪
Q
∪

R + ω
)∩(

D0

∪
Q
)

= (D0 + ω)
∩

D0 + (D0 + ω)
∩

Q + (Q + ω)
∩

D0

+(Q + ω)
∩

Q + ω
∩

D0 + ω
∩

Q

= d − (D0 + ω)
∩

P − (D0 + ω)
∩

D1

+(Q + ω)
∩

D0 + (Q + ω)
∩

Q + ω
∩

Q

According to Tables 1, 2, 3, we discussed four cases of nonzero element ω as follows
when d/e is odd.

a) when ω ∈ P ,

∆1 = d − (D0 + ω)
∩

P − (D0 + ω)
∩

D1 + (Q + ω)
∩

D0 + (Q + ω)
∩

Q + ω
∩

Q

= d − 0 − (p − 1)(q − 1)/4 + (p − 1)/2 + 0 + 0 = (pq + p − q − 1)/4

b) when ω ∈ Q,

∆2 = d − (D0 + ω)
∩

P − (D0 + ω)
∩

D1 + (Q + ω)
∩

D0 + (Q + ω)
∩

Q + ω
∩

Q

= d − d2 − (p − 1)(q − 1)/4 + 0 + p − 2 + 1 = (pq + 3p − 3q − 1)/4

c) when ω ∈ D0,

∆3 = d − (D0 + ω)
∩

P − (D0 + ω)
∩

D1 + (Q + ω)
∩

D0 + (Q + ω)
∩

Q + ω
∩

Q

= d − d2 + 1 − ((p − 1)(q − 1) − 3)/4 + d1 − 1 + 0 + 0 = (pq + 2p − 2q + 1)/4

d) when ω ∈ D1,

∆4 = d − (D0 + ω)
∩

P − (D0 + ω)
∩

D1 + (Q + ω)
∩

D0 + (Q + ω)
∩

Q + ω
∩

Q

= d − d2 − ((p − 1)(q − 1) + 1)/4 + d2 + 0 + 0 = (pq + 2p − 2q − 3)/4

We can obtain ∆1 = ∆2 + 1 = ∆3 = ∆4 + 1, so p = q + 2, ∆ = (p2 + 2p − 7)/4.
Hence, we have ∆ = (U + ω)

∩
V = (p2 + 2p − 7)/4 for every nonzero element ω ∈

Q
∪

D1.
Similar to the previous case, we can obtain ∆ = (U + ω)

∩
V = (p2 + 2p − 7)/4 for

every nonzero element ω ∈ Q
∪

D1 when d/e is even.
In summary, (U, V ) constructed an ADSP (pq, d + q.d + q − 1, d + q − 1, (p2 + 2p −

7)/4, p − 1 + d) if and only if q = p + 2.

Example 3.3. When p = 5, q = 7,

U = {1, 17, 9, 13, 11, 12, 29, 3, 16, 27, 4, 33, 7, 14, 21, 28, 0}
V = {1, 17, 9, 13, 11, 12, 29, 3, 16, 27, 4, 33, 7, 14, 21, 28}

(U, V ) constructs an ADSP (35, 17, 16, 16, 7, 16).

Theorem 3.4. Let U =
∪e−1

i=0 Di

∪
P , V =

∪e−1
i=0 Di

∪
Q
∪

R; (U, V ) is an ADSP (pq, pq−
p, pq − q + 1, pq − p − q + 1, pq − p − q + 1, p − 1).
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Proof: Similar to Theorem 3.1, we only consider the case i = 0. Obviously, |U | = pq−p,
|V | = pq − p − 1, e = |U

∩
V | = pq − p − q + 1. By Definition 2.1, we just need to prove

that there are p − 1 nonzero elements satisfying ∆ = (U + ω)
∩

V = pq − p − q + 1. For
every nonzero element ω ∈ Z∗

N , let ∆ = (U + ω)
∩

V , and then

∆ =

(
e−1∪
i=0

Di + ω

)∩ e−1∪
i=0

Di +

(
e−1∪
i=0

Di + ω

)∩
Q +

(
e−1∪
i=0

Di + ω

)∩
R

+(P + ω)
∩ e−1∪

i=0

Di + (P + ω)
∩

Q + (P + ω)
∩

R

According to Table 1, we discuss three cases of nonzero element ω as follows.
a) when ω ∈ P ,

∆1 =

(
e−1∪
i=0

Di + ω

)∩ e−1∪
i=0

Di +

(
e−1∪
i=0

Di + ω

)∩
Q +

(
e−1∪
i=0

Di + ω

)∩
R

+(P + ω)
∩

Q + (P + ω)
∩ e−1∪

i=0

Di + (P + ω)
∩

R

= (p − 1)(q − 1) + p − 1 + 0 + 0 + 0 + 1 = pq − p − q + 2

b) when ω ∈ Q,

∆2 =

(
e−1∪
i=0

Di + ω

)∩ e−1∪
i=0

Di +

(
e−1∪
i=0

Di + ω

)∩
Q +

(
e−1∪
i=0

Di + ω

)∩
R

+(P + ω)
∩

Q + (P + ω)
∩ e−1∪

i=0

Di + (P + ω)
∩

R

= (p − 2)(q − 1) + 0 + 0 + q − 1 + 0 + 0 = pq − p − q + 1

c) when ω ∈
∪e−1

i=0 Di,

∆3 =

(
e−1∪
i=0

Di + ω

)∩ e−1∪
i=0

Di +

(
e−1∪
i=0

Di + ω

)∩
Q +

(
e−1∪
i=0

Di + ω

)∩
R

+(P + ω)
∩

Q + (P + ω)
∩ e−1∪

i=0

Di + (P + ω)
∩

R

= (p − 2)(q − 2) + p − 2 + 1 + q − 2 + 1 + 0 = pq − p − q + 2

We can obtain ∆1 = ∆2 + 1 = ∆3, so ∆ = pq − p − q + 1 when every nonzero element
ω ∈ Q.

From the above, (U, V ) constructed an ADSP (pq, pq− p, pq− q +1, pq− p− q +1, pq−
p − q + 1, p − 1).

Example 3.4. When p = 3, q = 11,

U = {1, 2, 4, 8, 16, 32, 31, 29, 25, 17, 23, 13, 26, 19, 5, 10, 20, 7, 14, 28, 3, 6, 9,

12, 15, 18, 21, 24, 27, 30}
V = {1, 2, 4, 8, 16, 32, 31, 29, 25, 17, 23, 13, 26, 19, 5, 10, 20, 7, 14, 28, 11, 22, 0}

(U, V ) constructs an ADSP (33, 30, 23, 20, 20, 2).
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4. Conclusions. In this paper, we construct some almost difference set pairs with White-
man generalized cyclotomy based on cyclotomic classes and Chinese Remainder Theorem.
We get a large number of almost difference set pairs that satisfy practical engineering.
Simultaneously, we can also construct lots of binary sequence pairs with three-level auto-
correlation by almost difference sets pairs.
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