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Abstract. This paper presents a deep-learning framework, denoted as Brief-Net, based
on a convolutional neural network, and applies the framework to image classification.
The Brief-Net network consists of three convolution layers and max-pooling layers fol-
lowed by three fully connected layers. The softmax classifier is employed to identify image
classifications. The proposed network employs a relatively small first-layer convolution
kernel, overlapping pool-sampling, and eliminates the local response normalization layer
for reduced training time and memory cost. In this method, we use a very efficient
graphics processing unit implementation of the convolution operation to further reduce
training time. Experimental results obtained for two real-world datasets demonstrate the
effectiveness and efficiency of our method. Compared with two related state-of-the-art
approaches CaffeNet and AlexNet, our method provides higher identification accuracy
for the datasets considered.
Keywords: Deep learning, Caffe frame, Convolution neural network, Image classifica-
tion

1. Introduction. Fundamental research regarding artificial neural networks (ANNs) [1]
began prior to the computer age. While ANNs have demonstrated a unique capacity to
solve problems by extracting highly complicated patterns from complex and imprecise
data, early development was severely constrained by fundamental technical issues and the
lack of sufficient computer resources. However, with the parallel development of com-
puter resources and the key contribution regarding the back-propagation (BP) algorithm
[1] published by Rumelhart et al. in 1985, the development of ANNs has expanded con-
tinuously. ANN can perform different tasks such as image classification. However, ANNs
suffer from some drawbacks, such as overfitting and the long training times required for
networks that can include millions of parameters and the artificial selected feature set.
Selection of “good” features is a crucial step in the image classification since the next stage
sees only these features and acts upon them. Recently, many approaches, such as deep
learning [2], have been proposed to solve such problems. Deep learning is a relatively new
branch of machine learning that employs multilayered computational models to represent
data with multiple levels of abstraction. Presently, numerous types of deep networks have
been proposed for extracting useful information from rapidly growing volumes of digital
data, such as convolutional neural networks (CNNs) [3], restricted Boltzmann machines
(RBMs) [4], and stacked autoencoder (SAE) [5] networks. However, most of the top-level
algorithms in image recognition are somehow based on CNNs today. CNNs have been
widely used in many applications such as speech recognition [6], image classification [3],
and object detection [7].

1323



1324 Q. WANG, X. LI AND D. XU

Graphics processing units (GPUs) have been widely used in deep learning to accelerate
the speed of data computing and reduce the time required for the training and testing
of ANNs. As such, GPUs are better suited to high-speed operations than CPUs. GPUs
can effectively operate on images and graphical data far faster than conventional CPUs.
For example, application of the AlexNet [3] model based on the Caffe framework [8] to a
256 × 256 pixel image requires only 1.17ms when processed on the NVIDIA Tesla R⃝ K40
platform. The CUDA R⃝ (NVIDIA Corp.) framework is an extensively employed hardware
system that serves as the platform for some deep learning frameworks such as the con-
volutional architecture for fast feature embedding (Caffe) framework, Theano [9], Torch
[10] and MXNet [11]. Among these, Caffe is used by the NVIDIA Deep Learning GPU
Training System (DIGITS) open-source deep learning software for image classification.
DIGITS is an efficient deep learning framework widely used around the world. Caffe-
ware supports both GPU and CPU operations, and has Python and MATLAB wrappers.
Currently, the Caffe library has emerged as one of the most widely used/tested libraries
that implements CNNs. The Caffe framework greatly facilitates the implementation of
CNNs, where implementation requires only two prototxt files containing specifications
(the model definition) of the target network architectures and configurations for training
and testing. In addition, the framework makes activities like fine tuning and transfer
learning extremely easy.

The present work adopts CNNs to develop an improved deep-learning framework de-
noted as Brief-Net that is based on the Caffe framework. Brief-Net consists of three
convolution layers and three max-pooling layers followed by three fully connected layers.
The softmax classifier [12] is employed to identify image classifications. In this method,
we employ a very efficient GPU implementation of the convolution operation to greatly
reduce the training time. Compared with two related state-of-the-art approaches, Caf-
feNet and AlexNet, our method provides higher classification accuracy for some datasets.
Experimental results obtained for two real-world datasets demonstrate the effectiveness
and efficiency of our method.

The remainder of this paper is organized as follows. In Section 2, we would introduce
CNNs model. The Brief-Net model and motivations are proposed in Section 3. Section
4 shows the performance of the proposed model in real image classification tasks and
Section 5 concludes this paper.

2. Convolutional Neural Networks. CNNs are standard feed-forward multilayer AN-
Ns inspired by biological processes, and employ sparse connectivity and a shared weights
strategy. CNNs consist of a series of hidden convolutional and pool-sampling layers op-
tionally followed by fully connected layers and is good at extracting useful local and global
training features for classification. The standard CNN architecture is illustrated in Figure
1, which shows the arrangement of convolutional and pool-sampling sub-layers. Through
the series of these hidden layers, CNNs use the BP algorithm to train weights, and, in this
study, we obtain probabilities using the softmax classifier, which serves as the final output
layer. For each sample, each element of the probability vector Y (Y ∈ Rc×1), employing
one-hot encoding, corresponds to a class. To minimize the objective function, the network
structure uses the gradient descent method [13], which adjusts the weight parameters layer
by layer, and improves the network accuracy by frequent iterative training.

The primary components of the hidden layers of a CNN are described in detail as
follows.

• Convolutional layer: The layer parameters consist of a set of learnable convolution
kernels (filters). During the forward pass, each convolution kernel is incrementally
shifted over the width and height of the image matrix, and, at each position, the
dot product is computed between the entries of the convolution kernel and the local
image matrix until the convolution transformation (mapping transformation) of the
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original image is completed. The backward pass then applies the BP algorithm to
computing the gradients.

• Activation function: This function increases the nonlinear properties of the decision
function. Three common activation functions are employed, namely, the sigmoid,
hyperbolic tangent (tanh), and the rectified linear unit (ReLU) functions.

• Pool-sampling layer: This layer gradually reduces the spatial size of the image rep-
resentation to reduce the number of parameters and the computational load in the
network. Several non-linear functions have been employed to implement pooling,
such as max-pooling, mean pooling, and random pooling.

• Local response normalization (LRN) layer: The normalization operation is applied
to the down-sampled image to smoothing the output characteristics.

Figure 1. Standard convolution neural network (CNN), where C repre-
sents a convolution layer, S is a pool sampling layer, and FC is the fully
connected multilayer perceptron (MLP) layer.

The specific CNN implementation process based on the Caffe framework is illustrated
in Figure 2. At first, Caffe framework convert images are stored in LevelDB databases.
And then a typical network begins with a data layer that loads from disk and ends with
a loss layer that computes the objective for a task such as classification or reconstruction.

Figure 2. CNN implementation based on the Caffe framework, which in-
cludes a convolution layer (ConvLayer), an activation function (Active), a
pool-sampling layer (Pooling), a local response normalization layer (LRN),
a fully connected (FC) layer, and the Loss Layer.
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3. Proposed Brief-Net Model. We employ two modifications that would improve
the accuracy: a relatively small first-layer convolution kernel size and overlapping pool-
sampling. Of the first, we used a smaller convolution kernel which can extract the changes
in these details. Of the second, we employ overlapping pool-sampling that can avoid over-
fitting effectively. Also, our network has more streamlined structure.

The structure of the Brief-Net network model is illustrated in Figure 3. The network
model is composed of 3 convolution layers (C1-C3) employing progressively smaller kernels
(9 × 9, 5 × 5, and 3 × 3 respectively) followed by 3 fully connected layers (FC1-FC3)
with a softmax function at the end for classification. Each convolution layer applies a
number of convolution kernels to its input and concatenates the resulting convolution
maps. The output of each convolution layer passes through a ReLU activation function,
which then serves as the input of a max-pooling layer (S1-S3). In addition, the network
also uses a dropout regularization method to avoid over-fitting in the fully connected
layers. Compared with other network models, the first convolution layer employs a smaller
convolution kernel (9× 9). An equal learning rate is employed for all layers, and the rate
is automatically adjusted as the training progresses. The objective function, convolution
kernel, the use of an overlapping pool-sampling layer, activation function selection, and
the elimination of the LRN layer are discussed in detail as follows.

Figure 3. Brief-Net model structure, where C represents a convolution
layer, S represents a max-pooling layer, and FC represents a fully connected
layer.

3.1. Objective function. The Brief-Net model employs the softmax cost function as
the objective function to complete image classification. The softmax function is based
on softmax regression, which is a supervised learning algorithm that generalizes logistic
regression to cases of multiple classes. Assuming a training set composed of m train-
ing samples
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Here, 1{.} is the indicator function that determines if x(i) is of class j, i.e., 1{a true
statement} = 1 and 1{a false statement} = 0. The k possible values of y(i) are accumu-
lated, and the probability of classifying x(i) as class j is (2)

p
(
y(i) = j|x(i); θ

)
=

eθT
j x(i)

k∑
l=1

eθT
l x(i)

(2)

To solve for the minimum of J(θ) analytically, we employ gradient descent, which is an
iterative optimization algorithm. Taking derivatives, one can show that the gradient is
(3)

∆θj
J(θ) = − 1
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3.2. Convolution kernel. A convolutional layer is parameterized by the kernel sizes and
the number of maps. The first-layer convolution kernel is the closest to the input layer. It
is extracted from the basic features, so the parameters have the greatest influence, and the
subsequent layer structure depends heavily on the output of the first convolution layer.
For the image classification to extract small features, such as border, light and shade,
simple stripes, a smaller convolution kernel can extract the changes in these details, so
the model uses a smaller convolution kernel.

3.3. Overlapping pool-sampling layer. In conventional practice, the neighborhoods
summarized by adjacent pooling units do not overlap. A pooling layer can be thought of as
consisting of grid of pooling units spaced s pixels apart, each summarizing a neighborhood
of size z × z centered at the location of the pooling unit. If we set s = z, we obtain the
conventional local pooling commonly employed in CNNs. If we set s < z, we obtain
overlapping pooling. In the present work, we employ s = 2 and z = 3 throughout our
network. The adopted overlapping pool-sampling provides a network that is slightly less
susceptible to overfitting.

3.4. Activation function selection. The Brief-Net model applies the non-saturating
ReLU f(x) = max(0, x) as the activation function. When the input signal is less than 0,
the output is 0, and when the input signal is greater than 0, the output is equal to the
input. The primary advantages of ReLU are as follows.

The convergence rate of ReLU is greater than that of other activation functions.
ReLU requires only a threshold to obtain the activation value, and the calculation
complexity is low.

3.5. Elimination of the LRN layer. LRN is mainly the sampling layer contrast nor-
malization operation. The image data set contains little bright information and strong
contrast, the output requires no smoothing. The LRN layer is, therefore, eliminated from
the Brief-Net network model to reduce training time and memory costs.

4. Experiments and Results. The experiments were conducted on two NVIDIA Tesla
K40 GPU high-performance workstations running the Ubuntu 14.04 operating system. All
color images were 256×256 pixels. We compared the number of iterations at convergence
and the identification accuracy of Brief-Net with those of other network models, including
AlexNet and CaffeNet, which is a replication of AlexNet with a few modifications. The
three model structures are listed in Table 1 (layers 0-6) and Table 2 (layers 7-13). The
convolution layers and the max-pooling layers are characterized in the tables according
to the convolution kernel size and pooling layer size, respectively, step, fill boundary, and
quantity. For example, the first convolution layer of AlexNet is represented in Table 1 as
Conv 11-4-0-96, which indicates that the size of the convolution kernel is 11×11, the step
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Table 1. The three network structure settings (layers 0-6)

Model 0 Input layer 1 ConvLayer 2 Max-pooling 3 ConvLayer 4 Max-pooling 5 ConvLayer 6 Max-pooling

Brief-Net 256 × 256 Conv 9-4-0-96 MP 3-2-0-96 Conv 5-0-2-256 MP 3-2-0-256 Conv 3-0-1-384 MP 3-2-0-384

CaffeNet 256 × 256 Conv 11-4-0-96 MP 3-2-0-96 Conv 5-0-2-256 MP 3-2-0-256 Conv 3-0-1-384 MP 3-2-0-384
AlexNet 256 × 256 Conv 11-4-0-96 MP 3-2-0-96 Conv 5-0-2-256 MP 3-2-0-256 Conv 3-0-1-384 No

Table 2. The three network structure settings (layers 7-13)

Model 7 ConvLaye 8 ConvLayer 9 Max-pooling 10FC 11 FC 12FC 13 Classifier
Brief-Net No No No 2048 2048 5 Softmax
CaffeNet Conv 3-1-1-384 Conv 3-1-1-256 MP 3-2-0-256 4096 4096 5 Softmax
AlexNet Conv 3-1-1-384 Conv 3-1-1-256 MP 3-2-0-256 4096 4096 5 Softmax

is 4, the filling boundary is 0, and the number of convolution kernels is 96. As FC (fully
connected) layer, the numbers in the FC columns representation number of connection
parameters. Each convolution layer employs ReLU activation. The initial learning rate
(base lr) was set to 0.001 and the maximum number of iterations (max iter) was set to
500. Verification was conducted every 50 iterations during training. In all cases, training
was conducted using the cross validation method [14].

4.1. RO-5 dataset. The RO-5 image dataset from real object contained 5 classes includ-
ing images of buses, dinosaurs, elephants, flowers, and horses. We selected 200 images
from each category as the training set and 40 as the test set, for a total of 1200 images.

The identification accuracies of the three network models with respect to the number of
iterations are shown in Figure 4. The comparison results indicate that Brief-Net provides
the best performance. The Brief-Net model begins to converge after 50 iterations, which
is better than the convergence times of CaffeNet (100 iterations) and AlexNet (150 iter-
ations). Moreover, the identification accuracy of Brief-Net is superior, with an accuracy
of 97%, which is considerably better than that of AlexNet (84%). Similarly, Brief-Net
provides an improvement relative to CaffeNet, which has an accuracy of 94%.

4.2. Flower dataset. We also employed images obtained from a dataset collected by
the image recognition group of Maria-Elena Nilsback and Andrew Zisserman for flower
species identification [15]. The dataset images are assembled into 17 categories, and the

Figure 4. The accuracy of the three network models with respect to the
number of iterations for the RO-5 dataset
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images include a large degree of similarity. We selected 70 images from each category as
the training set and 10 as the test set, for a total of 1360 images.

The identification accuracy of the three network models with respect to the number of
iterations is shown in Figure 5. The comparison results indicate that Brief-Net provides
the best performance. The Brief-Net model converges after about 150 iterations, which
is better than both CaffeNet (200 iterations) and AlexNet (300 iterations). In terms of
identification accuracy, Brief-Net is again superior, with an accuracy of 70%, which is
significantly greater than those of CaffeNet (54%) and AlexNet (39%). These results
demonstrate that the Brief-Net model has better identification accuracy with more rapid
convergence for small differences image datasets.

Figure 5. The accuracy of the three network models with respect to the
number of iterations for the flower dataset

4.3. Influence of the first-layer convolution kernel size. The influence of the first-
layer convolution kernel size employed in the Brief-Net model was examined by comparing
the number of iterations at convergence and the identification accuracy obtained for the
RE-5 and flower datasets with different kernel sizes. Accordingly, the first-layer convolu-
tion kernel size was decreased from 11 to 5, and the results are listed in Table 3.

Table 3. Influence of the first-layer convolution kernel size

First-layer convolution Identification Number of iterations
kernel size accuracy (%) at convergence

RO-5 dataset

11 96 140
10 96 140
9 97 80
8 96 180
5 95 220

Flower dataset

11 67 150
10 68 100
9 70 100
8 69 140
5 69 140
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The experimental results show that the number of iterations at convergence and the
identification accuracy are affected by the size of the first-layer convolution kernel. For
the Brief-Net model, we find that the optimal first-layer convolution kernel size is 9 × 9.

5. Conclusion. We proposed a CNN model, denoted as Brief-Net, based on the Caffe
framework, which employs a relatively small first-layer convolution kernel size, overlapping
pool-sampling, and omits the LRN layer. The proposed network model demonstrated
better performance for the RO-5 and flower datasets than other existing network models,
including AlexNet and CaffeNet. Meanwhile, experimental results demonstrated that the
optimal size of the first-layer convolution kernel of Brief-Net is 9 × 9, which provides the
lowest number of iterations at convergence and the highest identification accuracy. Future
work will research other ways to retrain the deep CNNs.
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