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Abstract. Quantile information is useful in business and engineering applications, but
the exact sampling distribution of sample quantile is often unknown. In this paper,
we study the performance of four nonparametric methods, the kernel density estima-
tion (KDE), bootstrap percentile (BP), bootstrap-t (BT) and accelerated bias-correction
bootstrap (BCa) methods, through Monte Carlo simulations for conducting interval infer-
ence on the quantiles of normal and generalized Pareto distributions. Simulation results
show that the BCa and BP methods outperform the BT and KDE methods. Sample sizes
to implement the recommended nonparametric methods for inferring a range of upper
quantiles are also studied based on the coverage probability.
Keywords: Accelerated bias-correction bootstrap, Bootstrap percentile, Coverage prob-
ability, Quantile

1. Introduction. Let X1, X2, . . . , Xn be a random sample that is taken from a continu-
ous distribution F (x|Θ), where Θ = (θ1, θ2, . . . , θm) is a vector of parameters. The prob-
ability density function of F (x|Θ) is denoted by f(x|Θ). The pth quantile (0 < p < 1),
named qp, is defined by p =

∫ qp

−∞ f(t|Θ)dt = F (qp|Θ), where qp is a function of Θ. Denote
the estimate of qp by q̂p. Two popular distributions on business or engineering applications
are the normal distribution (ND(µ, σ)) and generalized Pareto distribution (GPD(µ, σ, ξ)).
The µ and σ in the ND are the mean and standard deviation, respectively; and the µ,
σ, and ξ in the GPD are the location, scale and shape parameters, respectively. The pth
quantiles of the ND(µ, σ) and GPD(µ, σ, ξ) can be defined, respectively, by

p =

∫ qp

−∞

1√
2πσ

exp

{
−(x − µ)2

2σ2

}
dx (1)

and

p =

∫ qp

−∞

1

σ

(
1 + ξ

x − µ

σ

)−(1+ 1
ξ )

dx. (2)

The ND and GPD cover a lot of distribution shapes for model fitting. For exam-
ple, if X is lognormal distributed, then Y = log(X) has an ND. The GPD can have
different kurtosis and skewness through varying the shape parameter. Applying Fisher
information matrix with maximum likelihood estimation method or bootstrap methods
for inferring distribution parameters can be found in [3-18]. Most of the existing studies
focus on studying the algorithms for evaluating the mean value or the maximum likeli-
hood estimates (MLEs) of the distribution parameters, and some existing studies focus
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on providing algorithms to evaluate the MLEs of median. In practical applications, the
KDE method often is used for large sample cases to establish the confidence interval (CI)
of distribution parameters, and bootstrap methods are used to establish the CI of distri-
bution parameters for small sample cases. However, reference sample sizes for applying
the KDE, BP, BT and BCa methods on inferring quantiles, especially on inferring a range
of upper quantiles, lack clear suggestions in the aforementioned existing studies.

Parametric methods for inferring the distribution parameters or quantiles can be found
in [4,7,11,15,18]. Nonparametric methods for inferring the distribution parameters or
quantiles can be found in [2,3,5,6,9,12-14,16,17]. Efron and Tibshirani [9] mentioned that
a good nonparametric method should give dependably accurate coverage probabilities for
all situations, and they also concluded that BCa CIs can conserve second-order accuracy
and transformation respecting on inferring the distribution parameters. To infer the
quantiles, it is not clear if the BCa method can outperform the BT and BP methods
on inferring a range of upper quantiles, and the performance study of the KDE method
on inferring the upper quantiles is also concerned. Another important issue is how large
sample size is enough for implementing and applying the nonparametric methods to infer
quantiles with a guaranteed coverage probability (CP). Hence, this study has two goals.
The first goal is to study the performance of the popular nonparametric methods, the
KDE, BP, BT and BCa methods, for conducting interval inference on qp, with different
levels of p, when the exact sampling distribution of q̂p cannot be obtained. The second goal
is to study the sample sizes of applying the nonparametric methods to inferring quantiles
with a guaranteed CP. These two goals are studied through Monte Carlo simulations.

The rest of this paper is organized as follows. In Section 2, we review the KDE,
BT, BP and BCa methods, and all four nonparametric methods are used to construct the
approximate CIs (ACIs) of distribution quantiles. Monte Carlo simulations are conducted
in Section 3 to evaluate the performance of the KDE, BT, BP and BCa methods on
estimating a range of upper quantiles for the ND(µ, σ) and GPD(µ, σ, ξ) with different
sample sizes. In Section 4, some conclusions are given.

2. Nonparametric Methods. Procedures to implement the KDE, BT, BP and BCa
methods are addressed as the following subsections.

2.1. The KDE method. Let X = (X1, X2, . . . , Xn) be a random sample that is drawn
from F (x|Θ). According to Bahadur representation in [2], the approximate sampling

distribution of q̂p is ND(qp, σ∗/
√

n), where σ∗ =
√

p(1 − p)/f(qp|Θ) and f(.|Θ) is the
probability density function of F (.|Θ). The 100 × (1 − α)% CI of qp, named the KDE-
ACI, can be obtained by

q̂p ± z1−α/2
σ∗√
n

(3)

through using the normal approximation method, where zδ is the δth quantile of ND(0, 1).
In practice, it is difficult to obtain the standard deviation σ∗ due to the f(x) could be
unknown. Based on the KDE method proposed by [1] for the realizations of x1, x2, . . . , xn,
the kernel estimate of f(x|Θ) can be obtained by

f̂(x) =
1

nh

n∑
i=1

K

(
x − xi

h

)
, (4)

where K is the kernel, which is nonnegative with mean 0 and integrates to one. h > 0 is
a smoothing bandwidth parameter.

Several kernel functions are widely used to implement the KDE method, for example,
the uniform, triangular, biweight, triweight, Epanehnikov and normal. The normal kernel
of K(u) = ϕ(u) = 1√

2π
exp{−u2/2} is popular for applying the kernel estimate in (4).

The bandwidth parameter h exhibits a strong influence on the resulting estimate. One
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common optimality criterion to select h is to minimize the mean integrated squared error:

MISE(h) = E

[∫ (
f̂(x) − f(x)

)2

dx

]
.

The selection of h is more important than the selection of K(.). Using too small or
too large value of h is unsuitable. Small h leads to very spiky estimates (less smoothing),
while larger h leads to over-smoothing and could blind important information for the
density estimate. The selections of h and K(.) will be further discussed in Section 3.

2.2. Bootstrap methods. Three algorithms are reported to implement the BP, BT and
BCa methods, in which the simplest one for practical applications is the BP method.
The BP method can be implemented through using Algorithm 1. The BT method can
be established through using a studentized pivot, in which the second bootstrap samples
for evaluating the standard error of q̂p are needed. The BT method can be implemented
via using Algorithm 2. The BCa method includes the bias correction and acceleration
procedures for bootstrap computation. We summarize the steps to implement the BCa
method in Algorithm 3.

Let x = (x1, x2, . . . , xn) be a random sample for parameter estimation. Denote q̂p as

the MLE of qp based on x. Let F̂ (x) denote the empirical distribution of F (x|Θ), and

yi = (x∗i
1 , x∗i

2 , . . . , x∗i
n ) denote the ith bootstrap sample generated from F̂ (x). The ACIs

through using the BP, BT and BCa methods are denoted by the BP-ACI, BT-ACI and
BCa-ACI, respectively.
Algorithm 1: The BP-ACI of qp.

Step 1. Generate a bootstrap sample y from F̂ (x). Then evaluate q̂p based on y and
denote it by q̂∗p.

Step 2. Repeat Step 1 N times (N is a big positive integer), and label the sample quantiles

by q̂∗ip for i = 1, 2, . . . , N . Let ĜB denote the bootstrap empirical distribution of

q̂∗ip , i = 1, 2, . . . , N .

Step 3. The 100 × (1 − α)% ACI of qp can be obtained by
(
q̂∗p(α/2), q̂

∗
p(1−α/2)

)
, where q̂∗p(δ)

is the δth quantile of ĜB. In practice, q̂∗p(δ) can be evaluated by q̂∗p[δB], where [δB]
denotes the largest integer less than or equal to δ × B.

Algorithm 2: The BT-ACI of qp.

Step 1. Generate N1 bootstrap samples, yi, i = 1, 2, . . . , N1, from F̂ (x). Then evaluate
sample quantile based on yi and denote it by q̂∗ip for i = 1, 2, . . . , N1.

Step 2. For each bootstrap sample in Step 1, we generate second bootstrap samples, each
has entries y∗

i,j , j = 1, 2, . . . , N2 based on the empirical distribution of yi and
denote sample quantiles based on qp based on the second bootstrap samples by

q̂∗i,jp for j = 1, 2, . . . , N2. Let ŝe(i) =
√∑N2

j=1

(
q̂∗i,jp − q̄∗i

)2
/N2, where q̄∗i =∑N2

j=1 q̂∗i,jp /N2. Compute t∗i =
(
q̂∗ip − q̂p

)
/ŝe(i) for i = 1, 2, . . . , N1 and σ̂q =√∑N1

j=1(q̂
∗i
p − q̄p)2/N1, where q̄p is the sample mean of q̂∗ip for i = 1, 2, . . . , N1.

Step 3. Let Ĥ be the empirical distribution of t∗i for i = 1, 2, . . . , N1. Define q̃bt(δ) =

q̂p − Ĥ−1(δ)σ̂q for 0 < δ < 1. The 100 × (1 − α)% BT-ACI of qp can be obtained
by (q̃bt(1 − α/2), q̃bt(α/2)).

Algorithm 3: The BCa-ACI of qp.

Step 1. Implement Steps 1-2 of Algorithm 1 to obtain the sample quantiles q̂∗ip , i =
1, 2, . . . , N .
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Step 2. Let ẑ0 = Φ−1
(
ĜB(q̂p)

)
, where Φ(.) is the standard ND function. Compute the fol-

lowing quantities: q̂∗p =
∑N

i=1 q̂∗ip /N , a1 =
∑N

i=1

(
q̂∗ip − q̂∗p

)3
, a2 =

∑N
i=1

(
q̂∗ip − q̂∗p

)2
,

â = a1/6a
3/2
2 , α1 = Φ

(
ẑ0 +

ẑ0+zα/2

1−â×(ẑ0+zα/2)

)
, and α2 = Φ

(
ẑ0 +

ẑ0+z1−α/2

1−â×(ẑ0+z1−α/2)

)
.

Step 3. Use the quantities in Step 2 to obtain the 100 × (1 − α)% BCa-ACI of qp by(
q̂∗p(α1), q̂

∗
p(α2)

)
.

3. Monte Carlo Simulations. An intensive simulation study is conducted to evaluate
the performance of the KDE, BP, BT and BCa methods on obtaining the ACIs of the
quantiles of the ND and GPD with different sample sizes. Consider p = 0.5, 0.65, 0.75,
0.85, 0.90, 0.95 and 0.99 with the sample sizes of n = 5, 10, 15, 20, 25, 30, 35, 40, 45,
50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900 and 1000 to use the KDE
method for estimating qp. Consider the same values of p with those for the KDE method
but use the sample size of n = 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100,
200, 300, 400 and 500 for implementing the BP, BT and BCa methods to estimate qp. All
combinations of p and n are run for the distributions of ND(3, 2), GPD(0, 1,−0.4) and
GPD(0, 1, 0.4). The GPD(0, 1,−0.4) is a thin-tailed distribution, and the GPD(0, 1, 0.4)
is a heavy-tailed distribution.

The normal kernel is considered to implement the KDE method. The SJ-ste method,
which was proposed by Sheather and Jones [8] and Jones et al. [10], is used to determine
the bandwidth parameter h for implementing the KDE method. The simulations of
bootstrap methods are run with 10000 repetitions for the nominal CP of 95%. R source
codes are prepared to obtain the simulation results. Because the simulation results are
huge, only some of them are reported in Tables 1-3 to save pages. Table 1 reports
the CPs of qp for ND(3, 2), and Tables 2 and 3 report the CPs for GPD(0, 1, 0.4) and
GPD(0, 1,−0.4), respectively. The smallest sample size to reach the condition that at

Table 1. Coverage probabilities of the pth quantiles for ND(3, 2)

p n 5 10 20 30 40 50 60 70 80 90 100 200
0.50 BCa-CP 0.782 0.924 0.936 0.944 0.946 0.947 0.945 0.944 0.948 0.947 0.946 0.951

BT-CP 0.948 0.89 0.866 0.867 0.879 0.877 0.878 0.879 0.888 0.884 0.888 0.904
BP-CP 0.938 0.942 0.939 0.946 0.948 0.948 0.948 0.948 0.949 0.949 0.946 0.953

KDE-CP 0.787 0.911 0.937 0.949 0.95 0.953 0.954 0.955 0.958 0.96 0.959 0.957
0.75 BCa-CP 0.754 0.916 0.928 0.939 0.937 0.939 0.945 0.943 0.946 0.943 0.943 0.947

BT-CP 0.862 0.865 0.854 0.854 0.857 0.866 0.87 0.871 0.875 0.872 0.878 0.896
BP-CP 0.745 0.914 0.925 0.941 0.938 0.939 0.945 0.943 0.945 0.945 0.944 0.947

KDE-CP 0.75 0.883 0.924 0.929 0.938 0.939 0.946 0.949 0.944 0.947 0.951 0.948
n 30 40 50 60 70 80 90 100 200 300 400 500

0.90 BCa-CP 0.932 0.918 0.925 0.93 0.93 0.935 0.94 0.937 0.942 0.943 0.949 0.944
BT-CP 0.805 0.82 0.821 0.839 0.835 0.847 0.847 0.857 0.868 0.877 0.898 0.895
BP-CP 0.862 0.911 0.899 0.93 0.923 0.92 0.931 0.931 0.937 0.94 0.945 0.946

KDE-CP 0.861 0.878 0.897 0.897 0.899 0.903 0.91 0.915 0.926 0.932 0.936 0.937
0.95 BCa-CP 0.785 0.867 0.91 0.93 0.923 0.915 0.926 0.931 0.936 0.941 0.941 0.939

BT-CP 0.791 0.784 0.812 0.771 0.812 0.809 0.833 0.814 0.845 0.858 0.863 0.872
BP-CP 0.788 0.872 0.881 0.847 0.875 0.91 0.914 0.896 0.932 0.937 0.939 0.939

KDE-CP 0.787 0.793 0.831 0.834 0.846 0.848 0.86 0.865 0.887 0.905 0.915 0.919
0.99 BCa-CP 0.265 0.33 0.39 0.454 0.5 0.546 0.594 0.639 0.859 0.902 0.902 0.892

BT-CP 0.64 0.658 0.67 0.691 0.676 0.691 0.685 0.67 0.758 0.751 0.789 0.798
BP-CP 0.266 0.33 0.39 0.456 0.501 0.548 0.596 0.641 0.864 0.832 0.903 0.887

KDE-CP 0.466 0.531 0.588 0.612 0.63 0.648 0.647 0.634 0.732 0.783 0.807 0.824
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most 1% error is allowed between the estimated CP and its nominal value 0.95, denote
this condition by |est. CP-0.95| < 0.01, was searched and summarized in Table 4.

Table 2. Coverage probabilities of the pth quantiles for GPD(0, 1, 0.4)

p n 5 10 20 30 40 50 60 70 80 90 100 200
0.50 BCa-CP 0.781 0.928 0.94 0.943 0.942 0.942 0.944 0.948 0.952 0.944 0.948 0.945

BT-CP 0.946 0.924 0.908 0.904 0.909 0.913 0.911 0.921 0.921 0.916 0.924 0.926
BP-CP 0.937 0.935 0.943 0.94 0.947 0.946 0.943 0.947 0.952 0.944 0.95 0.948

KDE-CP 0.762 0.881 0.904 0.913 0.918 0.916 0.919 0.924 0.925 0.934 0.928 0.93
0.75 BCa-CP 0.745 0.922 0.93 0.933 0.942 0.935 0.943 0.943 0.945 0.938 0.945 0.948

BT-CP 0.819 0.895 0.891 0.892 0.905 0.907 0.906 0.908 0.91 0.912 0.916 0.924
BP-CP 0.738 0.923 0.928 0.937 0.939 0.935 0.944 0.943 0.945 0.94 0.944 0.946

KDE-CP 0.605 0.774 0.825 0.847 0.86 0.865 0.876 0.88 0.886 0.896 0.893 0.913
n 30 40 50 60 70 80 90 100 200 300 400 500

0.90 BCa-CP 0.932 0.927 0.93 0.94 0.932 0.937 0.937 0.938 0.944 0.943 0.945 0.943
BT-CP 0.835 0.859 0.851 0.872 0.878 0.877 0.88 0.883 0.901 0.91 0.912 0.914
BP-CP 0.874 0.915 0.905 0.929 0.926 0.92 0.929 0.934 0.942 0.943 0.945 0.945

KDE-CP 0.69 0.721 0.747 0.754 0.768 0.784 0.793 0.794 0.841 0.862 0.88 0.892
0.95 BCa-CP 0.779 0.861 0.909 0.938 0.928 0.916 0.926 0.928 0.934 0.939 0.944 0.941

BT-CP 0.774 0.797 0.833 0.807 0.837 0.841 0.852 0.839 0.875 0.887 0.891 0.9
BP-CP 0.782 0.868 0.887 0.854 0.876 0.91 0.916 0.894 0.928 0.931 0.94 0.941

KDE-CP 0.676 0.526 0.689 0.578 0.716 0.618 0.726 0.642 0.733 0.77 0.799 0.822
0.99 BCa-CP 0.254 0.33 0.389 0.445 0.505 0.545 0.588 0.627 0.863 0.9 0.905 0.889

BT-CP 0.492 0.527 0.569 0.626 0.65 0.664 0.665 0.64 0.757 0.763 0.797 0.812
BP-CP 0.256 0.332 0.392 0.448 0.508 0.548 0.592 0.631 0.868 0.838 0.905 0.884

KDE-CP 0.573 0.7 0.768 0.788 0.77 0.735 0.621 0.178 0.204 0.243 0.277 0.308

Table 3. Coverage probabilities of the pth quantiles for GPD(0, 1,−0.4)

p n 5 10 20 30 40 50 60 70 80 90 100 200
0.50 BCa-CP 0.787 0.927 0.942 0.943 0.946 0.944 0.946 0.948 0.942 0.944 0.941 0.948

BT-CP 0.935 0.866 0.852 0.849 0.858 0.859 0.871 0.877 0.876 0.877 0.876 0.899
BP-CP 0.943 0.936 0.943 0.946 0.95 0.945 0.951 0.95 0.946 0.946 0.944 0.949

KDE-CP 0.747 0.871 0.908 0.921 0.926 0.926 0.933 0.926 0.932 0.935 0.936 0.94
0.75 BCa-CP 0.767 0.923 0.932 0.938 0.942 0.938 0.94 0.938 0.944 0.94 0.945 0.945

BT-CP 0.822 0.845 0.837 0.848 0.848 0.851 0.856 0.86 0.868 0.872 0.876 0.892
BP-CP 0.757 0.921 0.927 0.94 0.941 0.94 0.938 0.939 0.945 0.941 0.946 0.945

KDE-CP 0.682 0.831 0.875 0.889 0.902 0.907 0.913 0.914 0.919 0.92 0.925 0.929
n 30 40 50 60 70 80 90 100 200 300 400 500

0.90 BCa-CP 0.415 0.642 0.871 0.923 0.916 0.922 0.934 0.933 0.936 0.941 0.936 0.942
BT-CP 0.838 0.766 0.813 0.792 0.823 0.812 0.829 0.833 0.839 0.84 0.844 0.868
BP-CP 0.415 0.646 0.877 0.852 0.912 0.894 0.926 0.926 0.917 0.932 0.934 0.938

KDE-CP 0.72 0.732 0.803 0.84 0.863 0.869 0.883 0.889 0.891 0.896 0.899 0.923
0.95 BCa-CP 0.226 0.392 0.64 0.776 0.86 0.907 0.927 0.918 0.914 0.928 0.927 0.938

BT-CP 0.81 0.781 0.735 0.791 0.794 0.816 0.782 0.814 0.81 0.831 0.801 0.845
BP-CP 0.226 0.393 0.643 0.778 0.866 0.877 0.84 0.88 0.912 0.916 0.885 0.933

KDE-CP 0.51 0.678 0.718 0.794 0.804 0.831 0.842 0.858 0.859 0.866 0.868 0.904
0.99 BCa-CP 0.047 0.096 0.19 0.26 0.329 0.393 0.454 0.51 0.553 0.594 0.627 0.863

BT-CP 0.773 0.736 0.731 0.73 0.738 0.744 0.741 0.744 0.737 0.728 0.699 0.777
BP-CP 0.047 0.096 0.19 0.26 0.329 0.394 0.454 0.511 0.554 0.596 0.629 0.866

KDE-CP 0.126 0.266 0.444 0.542 0.611 0.651 0.696 0.715 0.727 0.718 0.71 0.79
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Table 4. Sample size for implementing the recommended methods

Distributions Quantiles Recommended methods Sample size

ND(3, 2)

0.5 BP\KDE 20
0.65 BP\BCa\KDE 35
0.75 BP\BCa\KDE 60

0.85
BCa 80
KDE 300

0.9
BCa 200
KDE 700

0.95
BCa 300 (unstable)
KDE > 1000

0.99 BCa > 500

GPD with

0.5 BP 20
0.65 BP\BCa 25-30
0.75 BP\BCa 80

(µ, σ, ξ) = (0, 1,−0.4) 0.85 BCa\BP 200
0.9 BCa 200
0.95 BCa 300 (unstable)
0.99 BCa\BP > 500

0.5
BP 30

KDE 600

0.65
BP\BCa 35-40

KDE 700
GPD with

0.75
BP\BCa 60

(µ, σ, ξ) = (0, 1, 0.4) KDE > 1000
0.85 BCa\BP 200
0.9 BCa 200
0.95 BCa\BP 400
0.99 BCa\BP > 500

From Tables 1-3 we find that the BT method works worse, compared with the BP, BCa
and KDE methods. All BT-CPs underestimate the nominal CP. The BP, BCa and KDE
methods are competitive for normal or thin-tailed distributions in Table 1 and Table 3.
The simulation results for heavy-tailed distribution are reported in Table 2.

To estimate the median for thin-tailed distributions of ND(3, 2) or GPD(0, 1,−0.4),
Table 4 shows that the BP and KDE methods perform better than the BCa and BT
methods and only ask sample size 20 to satisfy the condition of |est. CP-0.95| < 0.01 in
simulation. For the heavy-tailed distribution of GPD(0, 1, 0.4), the BP method performs
best among all nonparametric methods when sample size is 30, while the KDE method
requires sample size 600 to satisfy the condition of |est. CP-0.95| < 0.01.

For p ∈ (0.5, 0.75], the BP performs best with sample size 60 for estimating qp. If
p ∈ (0.75, 0.90], the BCa method performs best among all nonparametric methods for
estimating qp, but this method requires more sample resource. For example, the BCa
method asks sample sizes 200 and 300 for estimating qp when p = 0.90 and 0.95, respec-
tively, to satisfy the condition of |est. CP-0.95| < 0.01. Moreover, we find that if sample
size is less than 500, all methods are out of work for estimating qp if p is in (0.95, 0.99].

The KDE method can also be used to infer the quantiles for thin-tailed distributions
of ND(3, 2) or GPD(0, 1,−0.4), but the KDE method requires larger sample sizes for
estimating qp than that used by the BCa and BP methods to satisfy the condition of |est.
CP-0.95| < 0.01. The BT method looks to perform best for estimating qp when the sample
size is very small such as 5, but we also find that the estimation results are unstable by
operating bootstrap methods for estimating qp when the sample size is extremely small.
Hence, we do not recommend BT method in this study.
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Overall, we conclude that practitioners can implement the BP method with sample size
20-80 to estimate qp if 0.5 ≤ p ≤ 0.75, and implement the BCa method with sample size
100-200 to estimate qp if 0.75 < p ≤ 0.90, and implement the BCa method with sample
size 300-500 to estimate qp if 0.90 < p ≤ 0.95. When the sample size is less than 500, all
KDE, BP, BT and BCa methods cannot perform well to estimate qp if 0.95 < p ≤ 0.99
whatever the underlying distribution is ND or GPD.

4. Conclusions. In the paper, the KDE, BP, BT and BCa methods are used to obtain
the ACIs of the quantiles for the ND and GPD. The estimation performance of all the
applied nonparametric methods is evaluated through Monte Carlo simulations. The sim-
ulations were conducted for symmetric and asymmetric distributions with a wide range
of quantiles. Simulation results are generated by using R source codes. We find that
the BCa and BP methods outperform the other two nonparametric methods for estimat-
ing the quantiles if 0.50 ≤ p ≤ 0.90, and the BCa method is best for the estimation of
quantiles, if 0.90 < p ≤ 0.95, in terms of the CP. We recommend proper sample sizes to
implement the KDE, BP and BCa methods for estimating qp in Table 4. Table 4 can be
a guideline to implement these nonparametric methods on inferring quantiles for a range
of values of p.

It is noticed that when the sample size is less than 500, all KDE, BP, BT and BCa
methods cannot perform well to estimate the extremely high quantiles of p ≥ 0.99. This
topic can be studied in the future.
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