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Abstract. This paper investigates the synchronization problem of a novel four-dimens-

ional chaotic system from the view point of the chaotic attractor’s shape. To extract

the shape information of the chaotic attractor, the four-dimensional chaotic attractor is

projected onto the coordinate plane. A group of controllers are designed according to the

shape information of the chaotic attractor. A secure communication scheme is proposed

based on the shape synchronization of the novel four-dimensional chaotic system. Nu-

merical simulation results show the effectiveness of the proposed method.
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1. Introduction. In 1990, Pecora and Carroll proposed the drive-response synchroniza-
tion concept of chaotic systems in [1] for the first time. During the past two decades,
drive-response chaotic synchronization problem has been a hot topic in academia. So far,
many research findings about drive-response synchronization of chaotic systems have been
discovered. These findings vary with the definition of chaotic synchronization. Different
definitions come to different conclusions. Complete synchronization [1-5], partial syn-
chronization [6], generalized synchronization [7], projective synchronization [8-10], phase
synchronization [11], lag synchronization [12,13] are commonly accepted by the academia.
As we can see, these researches focus on the state of the chaotic systems and ignore the
shape characters of the chaotic attractors.

Under a given initial condition, the trajectory of a chaotic system that is described
by dynamic equations is a regular spatial curve with special characteristics in shape.
Different chaotic attractors have different characteristics in shape. Thus, the shape of the
chaotic attractors not only has geometric intuition, but also contains the inherent feature
of the chaotic systems. Therefore, it is well worth paying attention to the synchronization
problem of chaotic systems from the aspect of chaotic attractor’s geometry shape.

As is known, the attractor of a two dimensional chaotic system is a smooth plane curve.
According to the theory of plane curve differential geometry [14,15], two plane curves
possess the same shape when their signed curvature is equivalent while choosing the same
arc-length parameter. [16,17] investigated the shape synchronization problem of two and
three dimensional chaotic systems, but the chaotic systems with higher dimension are
not involved. Unlike two and three dimensional chaotic systems, the dynamics of higher
dimensional chaotic systems is more complex and the shape of the chaotic attractors is
invisible. It means that the shape of the higher chaotic attractors cannot be described
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by a single physical quality. On the other hand, in information transmission, higher
dimension means stronger information carrying capacity. Therefore, it is very necessary
to study the shape synchronization problem of higher dimensional chaotic systems. This
paper studies the shape synchronization of the four-dimensional Memristive Device based
chaotic shape.

The rest of the paper is organized as follows. Section 2 introduces the prior knowledge
of the plane curve that is involved in this paper. The description of drive system and
information of the drive system chaotic attractor is shown in Section 3. Section 4 gives
out the design of the controlled response system and the design of the shape synchroniza-
tion controller. A secure communication scheme based on the shape synchronization of
four-dimensional Memristive Device based chaotic shape is proposed in Section 5. The
conclusions are drawn in the last section.

2. Priori Knowledge of Plane Curve. Let r = r(t) ∈ Rn, t ∈ R+, R+ ∈ [0, +∞) be
a regular curve in Rn. When n = 2, it is called a plane curve. ‘Regular’ means to any
t ∈ R+, r′(t) = dr(t)/dt does not vanish. By the way, all curves that are mentioned in
this paper are regular curves.

The arc-length parameter s of curve r = r(t) is defined by the equation s(t1) =
∫ t1

t0
‖r′(τ)‖dτ , which indicates the unit length of the curve between the point r(t0) and

r(t1). Obviously, for any t ∈ R+, s′(t) > 0 and thus there must be an anti-function
t = t(s).

Consider the plane curve r(t) = (x(t), y(t))T ∈ R2 on the Cartesian right hand Frame.
The unit tangent is defined as:

T (t) =
r′(t)

|r′(r)|
=

1
√

(x′(t))2 + (y′(t))2

[

x′(t)
y′(t)

]

(1)

The unit normal vector is defined as:

N(t) =
1

√

(x′(t))2 + (y′(t))2

[

−y′(t)
x′(t)

]

(2)

It is easy to figure out that ‖T (t)‖ = 1, ‖N(t)‖ = 1, (T (y), N(t)) = 0, t ∈ R+. ‖ ∗ ‖
denotes Euclidean norm, and (∗) denotes the inner product. The signed curvature κ(t) is
defined as follows.

κ(t) =
x′(t)y′′(t) − x′′(t)y′(t)

[(x′(t))2 + (y′(t))2]3/2
(3)

Extraordinarily, if we choose the arc-length s as the parameter instead of time t, the
relationship between the signed curvature κ(s), unit tangent vector T (s) and unit normal
vector N(s) can be written as follows.

Ṫ (s) = κ(s)N(s), Ṅ(s) = −κ(s)T (s) (4)

It is the so called Frenet-Serret formula. At the same time, we have the signed curvature
κ(s), unit tangent T (s) and unit normal vector N(s) as below.

κ(s) = ẋ(s)ÿ(s) − ẍ(s)ẏ(s)

T (s) = ṙ(s) =

[

ẋ(x)
ẏ(s)

]

, N(s) =

[

−ẏ(s)
ẋ(s)

]

(5)

Suppose there are two arc-length parameterized regular curves r1(s) and r2(s). If their
signed curvatures κ1(s) and κ2(s) are equivalent everywhere and do not vanish, then the
curves r1(s) and r2(s) can transform to each other by a rotation and a translation. It
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means that r1(s) = Ar2(s) + Υ0, where matrix A =

[

cos θ0 − sin θ0

sin θ0 cos θ0

]

, θ0 is the rotation

angle, and Υ0 =

[

x0

y0

]

is a vector which gives the translation.

Definition 2.1. Consider two t-parameterized regular plane curves r1(t) and r2(t). Make
arc-length s be the common parameter from initial time t0. If there exist a matrix A =
[

cos θ0 − sin θ0

sin θ0 cos θ0

]

and a vector Υ0 =

[

x0

y0

]

such that r1(s) = Ar2(s) + Υ0, then the two

plane curves r1 = r1(t) and r2 = r2(t) are called to share the same shape [14,15].

3. Description of Drive-Response Systems.

3.1. Description of drive system. Drive system is the following four-dimensional
chaotic system based on Memristive Device [18].



















ẋ1 = x2

ẋ2 = x3

ẋ3 = x4

ẋ4 = −x3 − ax4 − bx3x4 − x2 + x1x2

(6)

where x = [x1, x2, x3, x4]
T is the state vector of the drive system and a = 0.5, b = 0.4.

Under a given initial condition, the attractor of the drive system is a four-dimensional
spatial curve. As we all know, four-dimensional space is invisible in geometric intuition,
so it is difficult to describe the shape of the chaotic attractors. However, when we refer to
[17], this problem can be solved by projecting the chaotic attractor onto the coordinate
plane. The projections of the chaotic attractor are regular plane curves. According to
the theory of plane curve [14,15], the shape of the plane can be described by using the
signed curvature. If there is a four-dimensional coordinate system, x1, x2, x3, x4 are the
axes and O is the origin, then the projection on the cordinate x1ox2 can be denoted as
r1 = (x1(t), x2(t))

T . The projection on the coordinate plane x3ox4 can be denoted as
r2 = (x3(t), x4(t))

T . It is noticed that the curves r1, r2 contain all of state of drive system
(6).

Therefore, the shape information of the projection chaotic attractor of drive system can
be extracted as follows.

s1 =

∫ t

t0

√

ẋ2
1 + ẋ2

2dt

κ1 =
ẋ1ẍ2 − ẍ1ẋ2

(ẋ2
1 + ẋ2

2)
3/2

(7)

s2 =

∫ t

t0

√

ẋ2
3 + ẋ2

4dt

κ2 =
ẋ3ẍ4 − ẍ3ẋ4

(ẋ2
3 + ẋ2

4)
3/2

(8)

Remark 3.1. (7) is the shape information of the projection on the coordinate plane
(namely r1) x1ox2. (8) is the shape information of the projection on the coordinate plane
x3ox4. (7) combined with (8) is the shape information of the chaotic attractor of the drive
system. The shape information of the attractor will be used in the design of the controllers.
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3.2. Description of response system. The controlled response system is designed as
below.











ẏi
1 = sin(yi

3)u
i
1

ẏi
2 = cos(yi

3)u
i
1

ẏi
3 = ui

2

(9)

where i = I, II, yi = (yi
1, y

i
2, y

i
3)

T
is the state vector of the ith subsystem and ui = (ui

1, u
i
2)

T

is the control input.
Response system (9) including two subsystems, the plane curves determined by the front

two dimension of subsystem can be denoted as r̃1 =
(

yI
1(t), y

I
2(t)

)T
, r̃2 =

(

yII
1 (t), yII

2 (t)
)T

.
The shape information of r̃1 can be extracted as

s̃1 =

∫ t

t0

√

(ẏI
1)

2
+ (ẏI

2)
2
dt

κ̃1 =
ẏI

1 ÿ
I
2 − ÿI

1 ẏ
I
2

(

(ẏI
1)

2
+ (ẏI

2)
)3/2

(10)

The shape information of r̃2 can be extracted as

s̃2 =

∫ t

t0

√

(ẏII
1 )2 + (ẏII

2 )2dt

κ̃2 =
ẏII

1 ÿII
2 − ÿII

1 ẏII
2

(

(ẏII
1 )

2
+ (ẏII

2 )
)3/2

(11)

Definition 3.1. If r̃1, r̃2 have the same shape with the projective curves r1, r2 respectively,
then the response system (9) and drive system (6) are called as synchronized in shape.

Remark 3.2. The two subsystems in (9) are designed to restore the projections of drive
system (r1, r2). It means the shapes of the curves r̃1, r̃2 will be the same as shapes of r1,
r2 via a group of well-designed controllers, respectively. Here comes the design process of
the controllers.

4. Synchronization of the Chaotic Systems. According to the theory of classic dif-
ferential geometry, two plane curves possess the same shape if their arc-length parameter
and signed curvature are the same. Inspired by this, the controller can be designed as
follows.

uI
1 =

√

ẋ2
1 + ẋ2

2

uI
2 =

ẋ1ẍ2 − ẍ1ẋ2

ẋ2
1 + ẋ2

2

(12)

uII
1 =

√

ẋ2
3 + ẋ2

4

uII
2 =

ẋ3ẍ4 − ẍ3ẋ4

ẋ2
3 + ẋ2

4

(13)

Theorem 4.1. Under the controller of (12), the curves r1, r̃1 have the same arc-length
parameter and signed curvatures.

Proof: Substituting (9) and (12) into (10), then we have

s̃1 =

∫ t

t0

√

(uI
1)

2dt =

∫ t

t0

√

ẋ2
1 + ẋ2

2dt = s1

κ̃1 = −
uI

2

uI
1

=
ẋ1ẍ2 − ẍ1ẋ2

(ẋ2
1 + ẋ2

2)
3/2

= κ1

(14)
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It is seen that via controllers in (12), s̃1 = s1, κ̃1 = κ1. This completes the proof of
Theorem 4.1.

Theorem 4.2. Under the controller of (13), the curves r2, r̃2 have the same arc-length
parameter and signed curvatures.

Proof: Substituting (9) and (13) into (11), then we have

s̃2 =

∫ t

t0

√

(uII
1 )2dt =

∫ t

t0

√

ẋ2
3 + ẋ2

4dt = s2

κ̃2 = −
uII

2

uII
1

=
ẋ3ẍ4 − ẍ1ẋ3

(ẋ2
3 + ẋ2

4)
3/2

= κ2

(15)

It is seen that via controllers in (12), s̃2 = s2, κ̃2 = κ2. This completes the proof of
Theorem 4.2.

According to aforementioned theory of plane curve and Definition 2.1, two plane curves
possess the same shape, if they have the same arc-length parameter and signed curvature,
and they can transform to each other through a rotation and a translation. r1, r2 contain
the state of drive system (6) and r̃1, r̃2 contain the state of response system (9). That
is to say, the state of drive system (6) can be restored in the above curves, if we do the
same transformation to the state that these curves correspond to.

When the initial state of drive system (6) is chosen as x(t0) = [0.06, 1e−6, 0.001, 0.001]T ,
the initial state of the response system is chosen as yI(t0) = [0.06, 1e− 6, 0] and yII(t0) =
[0.001, 0.001, 0]T . The projections of drive system (6) on the coordinate plane x1ox2,
x3ox4 (namely r1, r2) and the curves determined by response system (9) (namely r̃1, r̃2)
are shown in Figure 1.

As is shown in Figure 1, r̃1, r1 and r̃2, r2 respectively have the same shape, but their
positions are different. According to Definition 3.1, response system (9) is synchronized
with drive system (6) in shape.

According to Definition 2.1, a transformation is applied on the curves r̃1, r̃2. We can
find that after the transformation, r̃1 is completely the same with r1 and r̃2 is completely
the same with r2, as shown in Figure 2.
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Figure 1. Curves determined by drive and response system, where (a) is
the curve r1; (b) is the curve r2; (c) is the curve r̃1; (d) is the curve r̃2
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Figure 2. Curves after a transformation, where (a) the solid one is r1; the
dashed one is r̃1 after a transformation; (b) the solid one is r2; the dashed
one is r̃2 after a transformation
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Figure 3. State errors between drive system and recovered state

If we do the same transformation to the state that r1, r2 correspond to, the state after
transformation is combined as η = (η1, η2, η3, η4)

T . The state error between the state of
the drive system (6) and η is shown in Figure 3. The state error is defined as e1 = x1−η1,
e2 = x2 − η2, e3 = x3 − η3, e4 = x4 − η4.

From Figure 3, it can be seen that the state error between the state of drive system (6)
and the state of response system (9) after a transformation is very small. That is to say,
response system (9) is completely synchronized with drive system (6).

5. Chaotic Secure Communication Scheme. A secure communication scheme is
shown in Figure 4 which is designed based on the shape synchronization of the four-
dimensional Memristive Device based chaotic system.

The secure communication scheme in Figure 4 is based on Chaotic Masking encryption
technique. The function of the modules is explained as follows.

At the transmitter side:

1) Drive system: This module is designed based on Equation (6) and is used to gener-
ate chaotic signals x1, x2, x3, x4. The chaotic signals are used to mask the original
information signals m1(t), m2(t).

2) Shape analyzer: The module is used to extract the shape information (namely s1, κ1, s2,
κ2) of the drive system’s chaotic attractor.

3) Encryption module: The initial condition (θ(t)) of the drive system is encrypted by
the module.
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Figure 4. Secure communication scheme

At the receiver side:

1) Shape controller: The function of this module is to achieve shape synchronization
between the drive and response system.

2) Response system: Response system consists of two subsystems which are designed
based on Equation (9).

3) Position adjuster: The main responsibility of this module is to conduct a transforma-
tion (as shown in Figure 2) to the state of response system according to the initial
condition of the drive system.

4) Decryption module: this module is designed to decrypt the initial condition of the drive
system, which is supplied to the position adjuster.

To verify the feasibility of the proposed secure communication scheme, we choose
m1(t) = 0.01 sin(2πt), m2(t) = 0.1 sin(πt) as original information signal to conduct a
secure communication. The original information signal is masked by the chaotic signal,
and the combined signal is called as secret signal. In Figure 4, C1(t) and C2(t) are secret
signals and C1(t) = x1 + x2 + m1(t), C2(t) = x3 + x4 + m2(t). At the receiver side, the
recovered information signals are denoted as m̃1(t) and m̃2(t). Figure 5(a) and Figure 6(a)
are original information signals. Figure 5(b) and Figure 6(b) are secret signals. Figure
5(c) and Figure 6(c) are recovered information signals.

From Figure 5 and Figure 6, we can draw the conclusion that the original information
signals can be recovered accurately at the receiver side.

6. Conclusions. Shape synchronization of the four-dimensional Memristive Device based
chaotic shape has been achieved in this paper. A secure communication is proposed based
on the shape synchronization of the Memristive Device based chaotic shape. The informa-
tion delivered in the public channel is the shape information of the drive systems chaotic
attractor, which makes the communication system hard to be attacked. In addition, the
original information is overlapped with two chaotic masking signals respectively, which en-
hances the security of the system. Therefore, the proposed secure communication scheme
has a better performance in the data encryption field. Nevertheless, there are still many
problems that need to be solved. Our future work will focus on the designing of com-
munication system circuital implementation and expanding our study into integer and
fractional order chaotic systems.
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Figure 5. (a) The original information signal m1(t); (b) the secret signal
C1(t); (c) the recovered information signal m̃1(t); (d) signal error between
m1(t) and m̃1(t)
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Figure 6. (a) The original information signal m2(t); (b) the secret signal
C2(t); (c) the recovered information signal m̃2(t); (d) signal error between
m2(t) and m̃2(t)
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