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Abstract. A novel weighted multidimensional scaling algorithm is proposed to estimate
the position of the static target by considering time difference of arrival measurements and
base station position uncertainties. The solution is accurate and closed form. The results
show that the proposed algorithm has small bias and minimum square error compared with
the two-stage weighted least squares algorithm (2WLS) and constraint total least square
algorithm (CTLS). The performance of the proposed method achieves the Cramer-Rao
lower bound (CRLB) level in low base stations noise power.
Keywords: Multidimensional scaling, Localization, Time difference of arrivals, Base
station position errors

1. Introduction. Finding the source position has attracted a lot of debates in recent
years in various research fields such as radar, sonar and communication. Recently, many
types of research have focused on this issue since the US Federal Commission has adopted
a decision to develop the Emergency 911 (E-911) services [1].

The source position can be estimated by exploiting the time of arrival (TOA), the an-
gle of arrival (AOA), time difference of arrival (TDOA), frequency difference of arrival
(FDOA) and received signal strength (RSS). TOAs, TDOAs and RSSs provide distance
measurements. FDOA provides the rate of distance measurements, the AOA provides the
source direction according to sensors. On the other hand, the distances and bearing in-
formation are derived from the measurements and location for the known position sensors
[2,3]. A set of non-linear equations is generated from these measurements. They can be
solved by iterative algorithms such as Taylor method [4,5]. The iterative methods need a
good initial guess close to the actual position coordinates to guarantee the convergence.
In contrast, the closed form algorithms are efficient, and they do not require initial guesses
and convert the nonlinear equations to the set of the linear equations; hence, it provides
an accurate estimation for emitter location.

Nowadays, multidimensional scaling (MDS) [6,7] has become a powerful tool in ex-
ploratory data analysis. It has been used to find the position of mobile and static sources
in the complex environment. The MDS is started by constructing a dis/similarity distance
matrix among all pairs of sensors, and then, the double centring procedure is applied on
it. Finally, the eigenvalue decomposition figures the coordinate positions out.

The performance of localization algorithm depends on the availability of precise base
station locations. When the base station locations are accurately known, a good per-
formance will be expected under certain signal to noise ratio conditions. Most of these
algorithms could achieve the Cramer-Rao lower bound (CRLB). The CRLB is the mini-
mum variance that can be obtained by any unbiased estimator. However, the base station
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(BS) may have errors. When the BS positions are not precise, the performance of the es-
timator is degraded, if the covariance matrices of BS position error and the measurement
noise satisfy some certain conditions, then the acceptable estimate could be achieved.

In this monograph, we proposed an MDS localization algorithm using TDOA measure-
ments with the base stations positions uncertainties; it is closed form accurate estimator
and it reaches the CRLB at the low BS noise power. Moreover, it overcomes the 2WLS
and CTLS method is moderate and high level of BS noise power. The proposed estimator
can be used for non-cooperative target and passive target.

This monograph is organized as the following: the second section includes the sys-
tem model and CRLB analysis, the proposed solution of localization of BS positions
uncertainty is introduced in the third section, the simulation configuration and result are
presented in the forth section while the work is concluded in the fifth section.

2. The Proposed Model and CRLB. In 3-D coordinates system, it assumed that
an emitting target u is located at an unknown position u = [x, y, z]T , and the BSs are
located at sm = [xm, ym, zm]T , m = 1, 2, . . . , M where M is the total number of BS. The
BSs receive the signal from a target at the different time slot τi. To get a unique solution
for the target position, we assume that the receiving BSs are neither deploying on straight
line nor a plane. The noisy positions of the BSs are expressed as

S = So + ∆S (1)

where So = [so
1, s

o
2, . . . , s

o
M ]T and ∆S =

[
∆sT

1 , ∆sT
2 , . . . , ∆sT

M

]T
, ∆sm = [∆xm, ∆ym, ∆zm]T

is the location error vector while sm = [xm, ym, zm]T is the actual position vector for BSs,
and the error vector is a zero mean Gaussian random vector with the covariance matrix
Qβ = E{∆S∆ST}.

The first BS is selected as the reference one. Therefore, the range difference is ob-
tained by subtracting the distances between all sensors and the reference sensor. The
TDOA measurements are proportional to the range difference in a speed of signal c. The
conventional range difference obtained from TDOA τi1 is given as

di1 = c.τi1 = di − d1, i = 2, 3, . . . , M (2)

di =
√

(so
i − u)T (so

i − u), i = 1, 2, . . . , M (3)

From above equations, we have d01 = −d1 and d11 = 0. In practical situations, the effect
of noise should be considered, so define ri1 as the noisy range difference given by

ri1 = di1 + ni1 (4)

Then the matrix form of the previous equation is

r = d + n (5)

where r = [r21, r31, . . . , rM1]
T , d = [d21, d31, . . . , dM1]

T , n = [n21, n31, . . . , nM1]
T , n is

modelled as the Gaussian noise with zero mean and covariance Qn = E{nnT}. The error
of BS and the TDOA noise n are assumed to be uncorrelated.

The CRLB is the minimum variance that could be attained by any unbiased estimator;
it is defined as the inverse of Fisher information matrix [8], and the Fisher information ma-
trix of estimating the unknown source position using TDOA measurements with presence
of BS position uncertainties can be obtained as the following

FIM = X − YTZ−1Y (6)

Applying the matrix inversion lemma on the above equation, the result is the CRLB
and can be expressed as follows

CRLB(uo) = X−1 − X−1Y
(
Z − YTX−1Y

)−1
YTX−1 (7)
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where Z = (∂r/∂s)TQ−1
n (∂r/∂s) + Q−1

β is 3M × 3M matrix, Y = (∂r/∂u)TQ−1
n (∂r/∂s)

is 3 × 3M matrix, X = (∂r/∂u)TQ−1
n (∂r/∂u) is 3 × 3 matrix, and the partial derivatives

(∂r/∂s) and (∂r/∂u) are evaluated as follows

(∂r/∂s) =


(s1 − u)T /r1 −(s2 − u)T /r2 0 · · · 0
(s1 − u)T /r1 0 −(s3 − u)T /r3 · · · 0

...
...

...
. . . 0

(s1 − u)T /r1 0 0 · · · −(sM − u)T /rM


(8)

(∂r/∂u) =


(s2 − u)T /r2 − (s1 − u)T /r1

(s3 − u)T /r3 − (s1 − u)T /r1
...

(sM − u)T /rM − (s1 − u)T /r1

 (9)

It is noteworthy that the first part of the right-hand side of Equation (7) is the CRLB
of u when there is no base station position error. The trace of Equation (7) is the possible
minimum square error that can be achieved by this estimator. We consider this CRLB as
a benchmark to judge our proposed algorithm.

3. MDS Algorithm for TDOA Localization with Base Stations Uncertainty. In
the MDS algorithm for TDOA measurements, the relationship between the coordinates
of BSs, the scalar product matrix B, TDOA and the coordinate of the target is given by
[9]

BA[1 z]T = 0M (10)

where z = [uT − d1]. The above equation is a linear equation w.r.t the unknown
parameter, as we mentioned before the scalar product matrix B is M ×M with elements
given by

B = 0.5
[
(dm1 − dn1)

2 − (so
m − so

n)T (so
m − so

n)
]

(11)

A = PT
(
PPT

)−1
(12)

P =

 1 1 · · · 1
so
1 so

2 · · · so
M

d11 d21 · · · dM1

 (13)

By considering the noisy distance measurements instead of the actual one, Equation
(10) is rewritten as

ε = B̂Â[1 z]T (14)

where B̂ and Â are erroneousness of B and A respectively. ε is the M ×1 residual vector.
If we reorganize Equation (14), we have the vector equation w.r.t the unknown vector z
as

ε = B̂Â2z + B̂Â1 (15)

where ε is the residual vector, B̂ is the noisy version of B, Â1 is the first column of noisy
A, while the Â2 represents the rest of columns of the matrix Â. Note that the matrix
Â comprises only the BS positions error terms, while the matrix B̂ contains the TDOA
measurements error and BS positions error terms, the erroneous matrix B̂ can be given
as

B̂ = B + ∆B (16)

The entries of ∆B can be expressed as

[∆B]mn = (dm1 − dn1)(nm1 − nn1) − (so
m − so

n)T (∆sm − ∆sn) (17)
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The first term of Equation (17) includes the TDOA measurements error while the second

term contains the erroneous base station positions. The noisy Â and P̂ are expressed as

Â = A + ∆A (18)

P̂ = P + ∆P (19)

where

∆P =

 0 0 · · · 0
∆s1 ∆s2 · · · ∆sM

0 n21 · · · nM1

 (20)

Matrix A is a full rank matrix because A = P−1 when the number of base stations is equal
to five. Using this assumption we can extract the error matrix ∆A, and by exploiting
Neumann series, the error matrix can be written as the following

∆A = −A−1∆PA−1 (21)

In general, the error term can be expressed when the matrix A = P†,

∆A = −A−1∆PA−1 + (I − AP) ∆PT
(
PPT

)−1
(22)

To achieve CRLB performance, BS positions error should be considered, and by substi-
tuting Equation (22) into (15) we have

ε =
(
∆BA − BA−1∆PA−1 + (I − AP)∆PT

(
PPT

)−1
) [

1
z

]
(23)

Equation (23) can be written as

ε = Gn + Gs∆S (24)

The preceding expression in the residuals error vector with TDOA measurements n and
the BS position errors ∆S, G and Gs is defined as

G = T1 − BAT2 + F (25)

and
Gs = H1 − BAH2 + Fs (26)

where T1, T2, H1, H2, F and Fs are defined in Appendix (A).
Equation (24) represents the residuals vector which has a linear relationship with TDOA

measurements error as well as the BS positions error. If we neglect the BS position location
errors, Equation (24) becomes as ε = Gn which is the same as the expression in [9], and
the solution is easy and can be obtained by least square (LS) and weighted least square
(WLS). The LS provides an optimum performance only when the noise components in
the linear equation are independent and identically distributed (i.i.d). The weighted
least square is a straightforward and optimal solution; in addition, it overcomes the LS
solution when the noise components are not i.i.d. Here we consider the WLS solution for
our proposed problem when the information of TDOA measurements and sensor position
errors are known.

Noting that the elements in the residual vector are correlated, the weighted least squares
solution is proposed to enhance the correlation between the elements in ε, and the solution
is given by

ẑ = −
(
HTWH

)−1
HTWh (27)

where W is the symmetric weighting matrix. W is equal to the inverse of the covariance
of the residual vector ε and given by

W =
[
E

{
εεT

}]−1
=

(
GQnG

T + GsQβG
T
s

)−1
(28)

Applying the matrix inversion lemma, Equation (28) is given by

W =
(
GQnG

T
)−1 −

(
GQnG

T
)−1

GT
s

(
QT

s + GT
s

(
GsQβG

T
s

)
Gs

)
GT

s

(
GQnG

T
)−1

(29)
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In the end, the first three entries of ẑ in Equation (27) represent the estimation of the
target position.

The summary of the proposed algorithm using the weighting matrix is given as the
following:

1) obtain H and h using the noisy range difference r1m, m = 1, 2, . . . , M ,
2) find the initial estimate of ẑ using (27), using W = IM+1,
3) update the following steps one or two times,

a) use ẑ to obtain G,
b) update H and h,
c) obtain W using (28),

4) find ẑ.

4. Simulation and Results. In the simulation, the proposed algorithm is compared
with 2 stage weighted least squares [8,10], the constrained total least squares (CTLS) [11],
and the CRLB, and the three-dimensional case will be considered in these experiments.
The BSs are located at (300, 100, 150), (400, 150, 100), (300, 500, 200), (350, 200, 100),
(−100,−100, 100) and (200,−300,−200). The estimation accuracies regarding the posi-

tion estimation bias and minimum squares error are defined as
√

(E [û] − u)T (E[û] − u)
and E

[
(û − u)T (û − u)

]
respectively, and they are applying to evaluating the perfor-

mance of our proposed algorithm. All results are figured out by averaged 5000 times.
The TDOA measurements noise power σ2

n is set to 10−4, the TDOA measurements are
generated by adding white Gaussian noise with zero mean and covariance is equal to σ2

nΘ
where Θ is diagonal matrix having a size (M−1)×(M−1) that it is diagonal elements are
equal to one and the rest of elements are equal to 0.5. The notation σ2

BS is the BS position
error power. Therefore, the noisy BS positions error is created in much the same way using
covariance matrix Qβ = σ2

BSdiag[1, 1, 1, 2, 2, 2, 10, 10, 10, 40, 40, 40, 20, 20, 20, 3, 3, 3] which
indicates the different amount of noise power on the base stations.

Figure 1 shows the CRLB as a function of base station position error. The simulation
demonstrates the comparison between CRLB with and without base stations position un-
certainty. We assume the near-field target fixed at (280, 320, 275) (Figure 1(a)) while the
far-field target located at (2000, 2500, 3000) (Figure 1(b)). As the noise power increases,
the CRLB with the presence of base station positions uncertainties diverges further from

(a) (b)

Figure 1. Comparison of the CRLB with and without base station posi-
tions uncertainty for (a) near-field target and (b) far-field target
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the variance accuracy without base station positions uncertainty. In these two figures,
we show the CRLB for the case when the noise power is equal on each base station, and
the case when the noise power is varying in the base stations. The figures show us a
significant result for the CRLB with the base station position uncertainty when the noise
power is varying among all base stations.

Figure 2 is concerned about the position MSE as a function of σ2
BS. The MSE of the

proposed estimator for near-field target and far-field target is compared with the two-
step WLS, CTLS, and CRLB. The proposed solution reaches the CRLB level when the
σ2

BS < 0dB and σ2
BS < −20dB for near-field Figure 2(a) and far-field target Figure 2(b),

respectively. When σ2
BS > 0dB in Figure 2(a) and σ2

BS > −20dB in Figure 2(b), the
proposed solution diverges from the CRLB level but it overcomes the 2WLS and CTLS,
on the other hand, the proposed algorithm overcomes the other two methods in moderate
and high BS noise power. As the noise power of base stations increases, the threshold
affects the estimator; the effect is considered as a result of the nonlinear nature of the
positioning problem.

(a) (b)

Figure 2. Comparison of the MSE among the proposed estimator, 2WLS,
CTLS and the CRLB with the presence of base station positions uncertainty
versus σ2

BS for (a) near-field target (b) far-field target

Figure 3 concerns about the bias as a function of σ2
BS. The bias of the proposed

estimator is compared with the bias of two-step WLS and CTLS. The estimation bias is
grown due to the nonlinear nature of positioning problem as we mentioned before. The
figures clearly showed that the bias of the proposed algorithm performs better than 2WLS
and CTLS in moderate and high base stations noise power. Figure 3(a) demonstrates the
bias of the proposed method, 2WLS, and CTLS for near-field target, all algorithms almost
have the same bias when σ2

BS < 0dB, while the proposed method overcomes the 2WLS
and CTLS when σ2

BS exceeds 0dB. In far-field target scenario Figure 3(b), it can be seen
that when σ2

BS < −20dB, the proposed method, as well as the other two algorithms, have
almost equal performance, but in the case for σ2

BS > −20dB, the bias is dramatically
increased for other two methods while the proposed method has a relatively small bias.

5. Conclusion. In this monograph, the novel weighted multidimensional scaling (MDS)
was introduced with the presence of base station position uncertainties. The estimator
is accurate. The proposed method achieves the CRLB at low noise power and small BSs
error. In addition, the results show that the proposed method overcomes the two-step



ICIC EXPRESS LETTERS, VOL.11, NO.9, 2017 1399

(a) (b)

Figure 3. Comparison of the position bias for proposed estimator with
2WLS and CTLS versus σ2

BS for the (a) near-field and (b) far-field target

weighted least squares and constraint total least square algorithms. The algorithm will
be further extended to localize the moving target.
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Appendix (A). From Equations (25) and (26), the T1, T2, H1, H2, F and Fs are defined
as

T1 =


−γ12 −γ13 · · · −γ1M∑M
m=1 γ2m −γ23 · · · −γ2M

−γ32

∑M
m=1 γ3m · · · −γ3M

...
...

. . .
...

−γM2 −γM3 · · ·
∑M

m=1 γMm

 (30)

where γmn = an(dm1 − dn1), m = 1, 2, . . . ,M , n = 2, 3, . . . , M and from Equation (23),
the terms a2, a3, . . . , aM are defined as

a = A[1 z]T = [a1, a2, . . . , aM ]T (31)

T2 =

[
04 04 . . . 04

a2 a3 . . . aM

]
(32)

F = [B(I − AP)]2:end · e5 (33)

e5 represents the last row in the following equation

e =
(
PPT

)−1
[1 ẑ]T = [e1, e2, e3, e4, e5]

T (34)

H1 =


∑M

m=1 κ1m κ12 · · · κ1M

κ21

∑M
m=1 κ2m · · · κ2M

...
...

. . .
...

κM1 κM2 · · ·
∑M

m=1 κMm

 (35)

where κmn = an(so
m − so

n)T and m = 1, 2, . . . ,M , n = 1, 2, . . . , M .

H2 =

 0T
3M×1

a1I3 a1I3 . . . a1I3

0T
3M×1

 (36)

Fs = B (I − AP) diag
(
eT

2:4, e
T
2:4, . . . , e

T
2:4

)
(37)


