
ICIC Express Letters ICIC International c⃝2017 ISSN 1881-803X
Volume 11, Number 9, September 2017 pp. 1435–1440

INTEGRATING TEST DRIVEN DEVELOPMENT
INTO THE SOFTWARE DEVELOPMENT PROCESS

Haiyan Zhu, Qingcong Lv and Xiaohua Liu

School of Computer Science and Technology
Shandong Institute of Business and Technology

No. 191, Binhai Middle Road, Yantai 264005, P. R. China
hzhu5@hotmail.com

Received April 2017; accepted June 2017

Abstract. Test Driven Development (TDD) is a software development method which
requires developers to write low-level tests before coding. It has become popular in recent
years. Several studies have been conducted to analyze the influence of TDD on software
quality and productivity. In this paper, we investigate the effectiveness of TDD from
the process view. If TDD is considered as a software development subprocess, it can be
applied with other process models. As an example, we show how the waterfall model and
prototyping can be melded with TDD to create a new process model. Our experimental
results suggest that some improvements in quality can be achieved by incorporating TDD
into a software development process.
Keywords: Test driven development, Software development process, Software quality,
Software construction

1. Introduction. Extreme Programming (XP) is a new software development method
proposed by Beck [1]. Test Driven Development (TDD) is an essential part of the XP
development process. Many developers believe that TDD brings improvement in code
quality and productivity. Although not all programmers agree with all of the XP practices,
TDD has become popular and is being widely adopted in industry.

The main idea of TDD is that it requires developers to write low-level functional tests
before coding [2-4]. It is also referred to as Test-First Development. Test Driven Develop-
ment reverses the order of implementation and testing compared to a traditional software
development. It involves the repetition of a very short development cycle: writing a test,
producing code to pass the test and refactoring the code.

Several studies have been conducted to analyze the influence of TDD on software quality
and productivity [5-10]. The results of a case study of an IBM team who has been
practicing TDD for five years were reported in [5]. A controlled experiment for evaluating
the effectiveness of TDD was conducted in [6]. Crispin reported experiences with her
XP team and explained how TDD improved code quality [7]. Another case study can be
found in [8]. Rafique and Misic provided a systematic meta-analysis of 27 studies for the
impact of TDD on external code quality and productivity [9]. Guerra showed how TDD
was done in an agile environment [10]. All these studies showed that TDD had a positive
effect on the software quality, but they focused on TDD as a single process model. In this
paper, we investigate the effectiveness of TDD from the process view. We capture the
development process as a collection of process models, rather than focusing on a single
model. We consider TDD as a subprocess and integrate it into a software development
process. Our results show that incorporating TDD into a software development process,
some improvements in quality can be achieved. Section 2 reviews the concept of the test
driven development. Section 3 discusses the software development process and the test

1435



1436 H. ZHU, Q. LV AND X. LIU

driven development as a subprocess. Section 4 explains the advantages of TDD. Section
5 presents a simple experiment. Section 6 shows our conclusions.

2. TDD Development Cycle. TDD consists of the following steps.
1) Add a test. Each test adds some degree of functionality. The developer must

understand feature’s requirements before writing the test.
2) Run all tests and see if the new one fails. The new test does not pass because the

feature has not been implemented.
3) Write code to satisfy the new test. The new code will cause the test to pass.
4) Run all automated tests, repeat 3 if necessary until all tests pass.
5) Occasionally refactor to clean up dirty code and improve code structure. Run all

tests after refactoring to ensure all tests pass. The developer needs to make sure that
refactoring is not damaging any existing functionality.

Figure 1 illustrates the TDD development cycle.

Figure 1. The TDD development cycle

TDD is not a testing technique, but a test-driven development method. It involves
writing and executing test cases which are a description of the software design. By
developing test cases and code, the design evolves and the code is gradually refactored
to make the design cleaner and code structure better. Thus many people call TDD a
design technique. In fact, it melds program design, implementation and testing in a series
of very short iterations. It focuses on simplicity and feedback and achieves incremental
development.

The basic rule of TDD is that test cases are written for a new feature before imple-
menting code. When writing a test, the developer must understand the correct behavior



ICIC EXPRESS LETTERS, VOL.11, NO.9, 2017 1437

for the component or the system, but he does not have to care about implementation
details. For a new feature, there are often many test cases that have to be written down.
The testing framework such as xUnit (JUnit for Java) plays an important role in TDD.
It helps developers to create, execute and manage all these test cases. Programmers can
create tests easily and execute a suite of test cases with a single button click.

3. Software Development Process and TDD.

3.1. Software development process. A software development process describes the
life of a software product from its conception to its implementation, delivery, use and
maintenance [11]. It defines the order, control and evaluation of the tasks involving activ-
ities, constraints and resources. Processes are important because they impose consistency
and structure on a set of activities. Using a process developers know how to do something
well and when to do it.

In theory, there are different process models such as waterfall model, transformational
model, spiral model and agile methods [11]. Each model has its own characteristics,
benefits and drawbacks. For a new project, managers need to understand the goals,
constraints and unique feature of the project. Then they carefully choose the process
model to reflect the development goal. Usually the chosen process model should be
tailored for the special situation. At last they create their own process model for the
project.

3.2. TDD subprocess. Although TDD is the core practice of the Extreme Programming
(XP) development process, it can be used with other process models. We can view TDD
as a subprocess, which is applied within the context of different projects to form a new
process model.

The waterfall model illustrated in Figure 2 is a traditional process model. It describes
software development activities in a linear sequence: requirement analysis, system design,

Figure 2. The waterfall model



1438 H. ZHU, Q. LV AND X. LIU

program design, coding, unit testing, integration testing, system testing and maintenance.
There are some drawbacks with the waterfall model. The waterfall model does not tell
developers how to handle changes during software development. It does not reflect the
way code is really developed. Software is usually developed with a great deal of iteration.

TDD involves small cycles of iterations, writing test, implementing that test and refac-
toring the code. TDD can be used in program design and coding stages to overcome some
disadvantages of the waterfall mode.

To improve the quality of requirement analysis and design, the prototyping subprocess
can be used in the waterfall model. For example, developers may build a small system
to implement some key requirements to ensure that the requirements are correct, feasible
and practical; if not, revisions are made until there is common agreement on what the
system should do. Similarly, system design may also be prototyped to help developers
assess different design strategies and decide which is best for a particular project.

The modified waterfall model with prototyping and TDD is shown in Figure 3.

Figure 3. The waterfall model with prototyping and TDD

As illustrated in Figure 3, the TDD subprocess may be applied with many other process
models. The new process model can be defined and tailored with TDD to meet the special
needs of the project.

4. Advantages of TDD. The benefits of TDD are listed in the following.
(1) Iterative and incremental development. The iterative and incremental development

is one of the most popular approaches in software development. TDD consists of a se-
quence of “red-green-refactor” cycles. It involves many iterations and allows developers
to get feedback from previous iterations. From the constant feedback, developers feel
confident about whether the new functionality has been implemented and whether the
old functionality is still working.

(2) Better design. TDD not only validates the correctness of a component but also
drives the design. Developers can make good design decisions because they cannot write



ICIC EXPRESS LETTERS, VOL.11, NO.9, 2017 1439

code without understanding exactly what the system behavior should be and how to test
it. They are concerned with the interface of the component, not the implementation.
This approach often leads to small and maintainable units with high level of cohesion.
The frequent refactor in TDD also makes the code structure better.

(3) Easy debugging task. TDD takes small development tasks and relies on rapid
response to small code changes in the form of executing the regression test suite after
each change. The frequent nature of tests helps to detect bugs easily. Eliminating bugs
early in software development reduces debugging time and avoids lengthy and tedious
debugging later in the project. Repeated execution of tests gives developers a greater
confidence in the code.

Although TDD has gained a lot of attention during the last decade, the adoption of
TDD still faces many challenges. First, learning how to perform TDD may take several
weeks, and lack of knowledge and experience with TDD may increase development time.
However, as developers become familiar with TDD, the quality and productivity may be
improved. Second, insufficient design is another concern, particularly in the development
of large and complex systems. There are some studies reporting architectural problems
in TDD. In our view, if we consider TDD as a subprocess, the problem with the lack of
design in TDD can be solved. Developers must understand that TDD does not fit every
situation. When developing a system, they must determine when to apply TDD and how
to select an appropriate process and meld it with TDD.

5. Simple Experiment. To investigate the effectiveness of TDD, we conducted a simple
experiment with undergraduate students in the winter of 2015-2016. We selected 24
students who had finished object-oriented programming course and software engineering
course. All these students were voluntary and interested in software development, and
some of them had done several projects on object-oriented programming.

The students were assigned to six groups, each group with four students. Before the
experiment we told them the goals of the experiment and gave them three days training
on how to use TDD. Three groups applied the waterfall model with prototyping and used
the traditional program design, coding and unit testing steps instead of TDD subprocess.
The other three groups applied the waterfall model with prototyping and TDD. They
followed the same software development process model except TDD subprocess.

The project we selected for the experiment was a simple application used for the student
information management. Subjects were asked to perform the experiment task in the
computer laboratory and follow the planned time schedule. In the experiment our aim
was to find the effectiveness of TDD as a software development subprocess. After the
completion of the project, subjects filled in questionnaires, we evaluated the systems they
developed and examined the code. The data needed to measure the effectiveness of TDD
were also collected. The major fault statistics are illustrated in Table 1.

Our analysis results are quite positive. Table 1 shows that all three TDD groups
achieved better product quality than three non-TDD groups. They also created the
systems which were less complex and more highly tested. Other design characteristics

Table 1. Major fault statistics

Group No. Process Type Major Fault Count
Group 1 Integrated TDD Process 10
Group 2 Integrated TDD Process 8
Group 3 Integrated TDD Process 13
Group 4 Traditional Process 22
Group 5 Traditional Process 15
Group 6 Traditional Process 20



1440 H. ZHU, Q. LV AND X. LIU

such as coupling and cohesion were also improved. As to the productivity, we did not
observe improvements for the three TDD groups. A possible explanation is that they
needed to create more tests which increased the development time.

6. Conclusions. Our research intended to investigate the effectiveness of TDD as a
software development subprocess. Our results suggest that incorporating TDD into a
software development process, some improvements in quality can be achieved. Developers
can take advantage of the benefits of TDD in a software life cycle even if they have no
experience in this technique.

The validity of our results could be limited because all participants in the experiment
are students. Furthermore, the results are based on a small number of students. To
generalize the results, our experiments should be repeated in different environments and
in different contexts. We look forward to conducting the experiment in different contexts
with industrial developers.

We would like to do further TDD research on larger projects and collect data for more
accurate statistical analysis.

REFERENCES

[1] K. Beck, Extreme Programming Explained: Embrace Change, Addison-Wesley, Boston, MA, 2000.
[2] K. Beck, Test-Driven Development: By Example, Addison Wesley, 2003.
[3] D. Astels, Test Driven Development: A Practical Guide, Prentice-Hall, 2003.
[4] D. Janzen and H. Saiedian, Test-driven development: Concepts, taxonomy, and future direction,

Computer, vol.38, no.9, pp.43-50, 2005.
[5] J. Sanchez, L. Williams and E. Maximilien, On the sustained use of a test-driven development

practice at IBM, Proc. of AGILE, pp.5-14, 2007.
[6] H. Erdogmus, M. Morisio and M. Torchiano, On the effectiveness of the test-first approach to pro-

gramming, IEEE Trans. Software Eng., vol.31, no.3, pp.226-237, 2005.
[7] L. Crispin, Driving software quality: How test-driven development impacts software quality, IEEE

Software, vol.23, no.6, pp.70-71, 2006.
[8] N. Nagappan, E. M. Maximilien, T. Bhat and L. Williams, Realizing quality improvement through

test driven development: Results and experiences of four industrial teams, Empirical Software Eng.,
vol.13, no.3, pp.289-302, 2008.

[9] Y. Rafique and V. Misic, The effects of test-driven development on external quality and productivity:
A meta-analysis, IEEE Trans. Software Eng., vol.39, no.6, pp.835-856, 2013.

[10] E. Guerra, Designing a framework with test driven development: A journey, IEEE Software, vol.31,
no.1, pp.9-14, 2014.

[11] S. L. Pfleeger and J. M. Atlee, Software Engineering: Theory and Practice, Prentice-Hall, 2010.


