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Abstract. The purpose of this article is solving the fuzzy linear Volterra integral equa-
tions by a numerical method. The proposed approach is based on least squares approxi-
mation method, which is based on a polynomial of degree n to compute an approximation
to the solution of fuzzy Volterra integral equations. At first, by using the parametric form
of fuzzy numbers the linear fuzzy Volterra integral equation is transformed into two crisp
linear Volterra integral equations, then the least squares approximation method is used
to find approximate solution of the obtained system, and hence, obtain an approxima-
tion for fuzzy solutions of linear Volterra integral equation. Several numerical examples,
in which the exact solutions are known, are provided for better showing the accuracy of
least squares approximation method. The results obtained through numerical procedure
show that the method is effective and reliable, and also numerical results reveal that the
mentioned method is very easy to implement.
Keywords: Fuzzy Volterra integral equation, Least squares approximation method,
Parametric form of fuzzy function

1. Introduction. The integral equations have been one of the principal tools in various
areas of applied mathematics, physics, engineering, geographics and biology.

Usually in many applications, some of the parameters in our problems are represented
by fuzzy number rather than crisp one, and hence it is important to develop mathematical
models and numerical procedures that would appropriately treat general fuzzy integral
equations and solve them [7-9,14,18,19].

There are several methods for solving fuzzy Fredholm integral equations by using para-
metric form of fuzzy number and converting a fuzzy Fredholm integral equation to two
linear systems of integral equations in deterministic case [2,5,6,10-12]. Moreover, there are
some computational and analytical methods to obtain solution of fuzzy Volterra integro-
differential, fuzzy Volterra-Fredholm and fuzzy Volterra integral equations [3,4,16]. This
paper applies the least squares method to the fuzzy linear Volterra integral equations of
the form

u(x, r) = f(x, r) + λ

∫ x

a

(k(x, t)u(t, r))dt, (1)

where u(x, r) = (u(x, r), u(x, r)) is a fuzzy-valued function to be solved for given known
fuzzy function f(x, r) =

(
f(x, r), f(x, r)

)
and given known real-valued function k(x, t).

Also λ ∈ R and x ∈ [a, b], b < ∞, where a, b are constants.
This paper is organized as follows. Section 2 presents some preliminaries of fuzzy

calculus which will be used later. Section 3 is focused on least squares approximation
method for fuzzy Volterra equation (1). Then in Section 4, for implementing the proposed
approach, some numerical examples are brought. Finally conclusion is drawn in Section
5.
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2. Preliminaries.

Definition 2.1. [8] A fuzzy number u in parametric form is a pair of functions (u(r),
u(r)), 0 ≤ r ≤ 1, which satisfy the following requirements:

1) u(r) is a bounded non-decreasing left continuous function in (0, 1], and right contin-
uous at 0.

2) u(r) is a bounded non-increasing left continuous function in (0, 1], and right contin-
uous at 0.

3) u(r) ≤ u(r), 0 ≤ r ≤ 1.

Let E be the set of all upper semicontinuous normal convex fuzzy numbers with bounded
r-level intervals. It means that if u ∈ E then r-level set,

[u]r = {s | u(s) ≥ r}, 0 ≤ r ≤ 1

is a closed bounded interval which is denoted by

[u]r = [u(r), u(r)] .

For arbitrary u = (u(r), u(r)), v = (v(r), v(r)) and k ∈ R, we have:

• Addition: u(r) + v(r) = u(r) + v(r) and u(r) + v(r) = u(r) + v(r)

• Subtraction: u(r) − v(r) = u(r) − v(r) and u(r) − v(r) = u(r) − v(r)

• Scalar product: k · u(r) =

{
(ku(r), ku(r)) k ≥ 0,

(ku(r), ku(r)) k < 0.

Definition 2.2. [8] The Hausdorff distance between fuzzy numbers given by D : E×E →
R+ ∪ {0},

D(u, v) = sup
r∈[0,1]

max{|u(r) − v(r)| , |u(r) − v(r)|}.

D is a metric in E and has the following properties [15],

(i) D(u + w, v + w) = D(u, v), ∀u, v, w ∈ E,
(ii) D(k · u, k · v) = |k|D(u, v), ∀k ∈ R, u, v ∈ E,
(iii) D(u + v, w + e) ≤ D(u,w) + D(v, e), ∀u, v, w, e ∈ E,
(iv) (D, E) is a complete metric space.

Definition 2.3. [10] A fuzzy function f : R → E is said to be continuous for arbitrary
fixed x0 ∈ [a, b], if for every one ϵ > 0 there exists δ > 0 such that if |x − x0| < δ then
D(f(x), f(x0)) < ϵ.

Definition 2.4. [13] A mapping f : I ⊂ R → E is called levelwise continuous at a ∈ I if
the set-valued mapping fr(x) = [f(x)]r is continuous at x = a with respect to the Hausdorff
metric D for all r ∈ [0, 1].

Theorem 2.1. [13] Assume that

(1) f(x) is a levelwise continuous mapping on [a, a + x0], x0 > 0;
(2) k(x, t) is a levelwise continuous mapping on ∆ : a ≤ t ≤ x ≤ a+x0, D(u(x), f(x)) ≤

y0, y0 > 0;
(3) for any (x, t, u(t)) ∈ ∆, (x, t, v(t)) ∈ ∆, we have D([k(x, t, u(t))]r, [k(x, t, v(t))]r) ≤

LD([u(t)]r, [v(t)]r), where L > 0 is a given constant for any r ∈ [0, 1].

Then there exists a unique levelwise continuous solution u(x) of (1) defined for x ∈
(a, a + δ), δ = min{x0,

y0

M
}, where M = D(k(x, t, u(t)), 0), (x, t, v(t)) ∈ ∆.
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3. Fuzzy Least Squares Approximation Method. Assuming that the function
k(x, t) satisfies some conditions (Theorem 2.1) such that the solution of (1) exists and is
unique. Without loss of generality, we assume that k(x, t) > 0 for any a 6 x, t 6 b, and
then according to Section 2, the parametric form of Equation (1) is as follows

u(x, r) = f(x, r) + λ

∫ x

a

(k(x, t)u(t, r)) dt, (2)

u(x, r) = f(x, r) + λ

∫ x

a

(k(x, t)u(t, r)) dt. (3)

Now, we define the following operator:

T (x, u(x, r)) = u(x, r) − f(x, r) − λ

∫ x

a

(k(x, t)u(t, r))dt. (4)

For positive integer n > 0, suppose φ0(x), φ1(x), . . . , φn(x) are linearly independent func-
tions on the interval [a, b] and Φn = span{φ0(x), φ1(x), . . . , φn(x)}.

Let un = (un, un) where un, un ∈ Φn, and then there exist numbers ci = (ci, ci),
i = 0, 1, . . . , n, such that

un(x, r) =
n∑

i=0

ci(r)φn(x). (5)

Now with placement (5) into (4), for any x ∈ [a, b], i = 0, 1, . . . , n we have:

T (x, un(x, r)) = un(x, r) − f(x, r) − λ

∫ x

a

(k(x, t)un(t, r))dt

=
n∑

i=0

ci(r)

[
φi(x) − λ

∫ x

a

(k(x, t)φi(t))dt

]
− f(x, r)

=
n∑

i=0

ci(r)αi(x) − f(x, r), (6)

where αi(x) = φi(x) − λ
∫ x

a
(k(x, t)φi(t))dt.

Also, for any a ≤ x ≤ b, we define Rn(x, r) = T (x, un(x, r)) − T (x, u(x, r)), i.e.,

Rn(x, r) = (un(x, r) − u(x, r)) − λ

∫ x

a

k(x, t)(un(t, r) − u(t, r))dt.

In the following, let

I = I(c0, c1, . . . , cn)

=
(
I(c0, c1, . . . , cn), I(c0, c1, . . . , cn)

)
=

(∫ b

a

T 2 (x, un(x, r)) dx,

∫ b

a

T
2
(x, un(x, r)) dx

)
. (7)

The purpose of this step is to find coefficients ci, i = 0, 1, . . . , n that will minimize I.

A necessary condition for minimizing I by numbers ci, i = 0, 1, . . . , n is that
∂I

∂ci

= 0

and
∂I

∂ci

= 0 for each i = 0, 1, . . . , n.

By the relation (7) we have:

∂I

∂ci

= 2

∫ b

a

T (x, un(x, r)) · ∂I (x, un(x, r))

∂ci

dx

= 2

∫ b

a

{
n∑

j=0

[
φj(x) − λ

∫ x

a

k(x, t)φj(t)dt

]
cj − f(x, r)

}
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·
[
φi(x) − λ

∫ x

a

k(x, t)φj(t)dt

]
dx = 0, (8)

or, for j = 0, 1, . . . , n

n∑
i=0

cj

∫ b

a

αj(x) · αi(x)dx =

∫ b

a

f(x, r)αi(x)dx. (9)

Similarly,

∂I

∂ci

= 2

∫ b

a

T (x, un(x, r)) · ∂T (x, un(x, r))

∂ci

dx

= 2

∫ b

a

{
n∑

j=0

[
φj(x) − λ

∫ x

a

k(x, t)φj(t)dt

]
cj − f(x, r)

}

·
[
φi(x) − λ

∫ x

a

κ(x, t)φj(t)dt

]
dx = 0, (10)

or
n∑

i=0

cj

∫ b

a

αj(x) · αi(x)dx =

∫ b

a

f(x, r)αi(x)dx j = 0, 1, . . . , n. (11)

To find un and un, systems of Equations (9) and (11) must be solved for 2n+2 unknown
cj and cj.

The systems (9) and (11) can be written in the form:

B.c = d,

and

B.c = d,

where B = [bij](n+1)×(n+1), bij =
∫ b

a
αj(x).αi(x)dx for i, j = 0, 1, . . . , n, also d = [d0, d1, . . .,

dn] and d =
[
d0, d1, . . . , dn

]
where di =

∫ b

a
f(x)αi(x)dx and di =

∫ b

a
f(x)αi(x)dx.

4. Numerical Examples. In this section, three examples are given to illustrate the
application of the proposed method. Also, the computed errors δn are defined by,

δn ≈
[∫ b

a

e2
n(x, r)dx

] 1
2

,

where en(x, r) = u(x, r) − un(x, r).
For easy calculation, we assume Φn = span {φ0(x), φ1(x), . . . , φn(x)} to be an nth

polynomial function space.

Example 4.1. Let us consider the following fuzzy Volterra integral equation:

u(x) = f(x) +

∫ x

0

(x − t)u(t)dt,

where f(x, r) = [3 + r, 8 − 2r]. This integral equation has the exact solution u(x, r) =
[3 + r, 8 − 2r] · cosh(x).

We present the error of the proposed method in Table 1 for r = 0.1, 0.9 and different
values of n. Also, in Figure 1, we plot the obtained solution by n = 8 and exact solution
based on r-cuts for r = 0, 1. Also, in Figure 2, we see that the approximate solution
obtained by the present method has a good accuracy on the whole interval.
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Table 1. The error of u and u for r = 0.1, 0.9 and n = 2, 3, . . . , 8

δn δn δn δn

n r = 0.1 r = 0.1 r = 0.9 r = 0.9

2 5.20e-3 1.31e-2 6.55e-3 1.04e-2

3 7.01e-4 1.76e-3 8.82e-4 1.40e-3

4 1.63e-5 4.10e-5 2.05e-5 3.26e-5

5 1.46e-6 3.69e-6 1.84e-6 2.93e-6

6 2.43e-8 6.12e-8 3.06e-8 4.86e-8

7 1.64e-9 4.13e-9 2.06e-9 3.28e-9

8 2.12e-11 1.57e-10 7.86e-11 4.32e-11

(a) 0-cut

(b) 1-cut

Figure 1. Exact and approximate solution (n = 8) for Example 4.1

Example 4.2. Consider the following fuzzy Volterra integral equation:

u(x) = f(x) +

∫ x

0

(x − t)u(t)dt,

where f(x, r) =

(
1 − x − x2

2

)
· [r, 2− r]. In this example, the exact solution is [r, 2− r] ·

(1 − sinh(x)).
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(a) 0.1-cut (b) 0.9-cut

Figure 2. The error of u and u for r = 0.1, 0.9 and n = 2, 3, . . . , 8

Table 2. The error of u and u for r = 0.1, 0.9 and n = 2, 3, . . . , 8

δn δn δn δn

n r = 0.1 r = 0.1 r = 0.9 r = 0.9

2 3.60e-4 6.84e-3 3.24e-3 3.96e-3

3 1.05e-5 1.99e-4 9.46e-5 1.15e-4

4 1.13e-6 2.15e-5 1.02e-5 1.24e-5

5 2.19e-8 4.17e-7 1.97e-7 2.41e-7

6 1.69e-9 3.22e-8 1.52e-8 1.86e-8

7 2.45e-11 4.66e-10 2.21e-10 2.70e-10

8 1.48e-12 2.90e-11 1.33e-11 1.66e-11

We have the numerical results in Table 2 for r = 0.1, r = 0.9 and n = 2, 3, . . . , 8.

Figure 3 shows the exact solution and the resulted solution by the presented method
(n = 8) based on 0-cut and 1-cut. Also, Figure 4 shows error of u and u for r = 0.1, 0.9
and n = 2, 3, . . . , 8.

Example 4.3. Let us consider the following fuzzy Volterra integral equation:

u(x) +

∫ x

0

(
e−(t−x) · u(t)

)
= c · f(x),

where c ∈ E with c(r) = [1, 2 − r], f(x) = cosh(x), 0 ≤ r ≤ 1. In this example, the exact
solution is u(x, r) = [1, 2 − r] · e−x.

We have the numerical results in Table 3 for r = 0.1, r = 0.9 and n = 2, 3, . . . , 8.

Figure 5 shows the exact solution and the numerical solution based on least square
approximation method for n = 8 based on 0-cut and 1-cut, and Figure 6 shows error of u
and u for r = 0.1, 0.9 and n = 2, 3, . . . , 8.

According to examples we show that the proposed method is effective and gives solution
with high accuracy.

5. Conclusion. The fuzzy integral equations are important for solving a large proportion
of the problems in many topics in applied mathematics.
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(a) 0-cut

(b) 1-cut

Figure 3. Exact and approximate solution (n = 8) for Example 4.2

(a) 0.1-cut (b) 0.9-cut

Figure 4. The error of u and u for r = 0.1, 0.9 and n = 2, 3, . . . , 8
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Table 3. The error of u and u for r = 0.1, 0.9 and n = 2, 3, . . . , 8

δn δn δn δn

n r = 0.1 r = 0.1 r = 0.9 r = 0.9

2 1.94e-3 3.68e-3 1.94e-3 2.13e-3

3 1.22e-4 2.31e-4 1.21e-4 1.34e-4

4 6.11e-6 1.16e-5 6.11e-6 6.72e-6

5 2.55e-7 4.84e-7 2.55e-7 2.80e-7

6 9.12e-9 1.73e-8 9.12e-9 1.00e-8

7 2.85e-10 5.42e-10 2.85e-10 3.14e-10

8 2.13e-11 8.33e-11 2.13e-11 3.53e-11

(a) 0-cut

(b) 1-cut

Figure 5. Exact and approximate solution (n = 8) for Example 4.3

In this paper, we used the least squares approximation method to obtain a numerical
approximation of linear fuzzy Volterra integral equations. The accuracy of the proposed
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(a) 0.1-cut (b) 0.9-cut

Figure 6. The error of u and u for r = 0.1, 0.9 and n = 2, 3, . . . , 8

method has been demonstrated by the numerical examples. This method is efficient that
it gives approximations of high accuracy.

In the near future, the least squares approximation method will be used on non-linear
fuzzy Volterra integral equations.
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