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Abstract. The problem of system identification for nonlinear system is studied in this
paper by using EM algorithm, and a stochastic scheduling parameter which follows a
Markov jump process is considered. First, multi-model approach is addressed to describe
the nonlinear process, where each linear parameter system is represented by an auto re-
gressive exogenous model, and then, EM algorithm is used to do estimation with the help
of stochastic scheduling parameter. A simulation example is given to illustrate the effec-
tiveness of the approach proposed.
Keywords: System identification, Multi-model approach, Stochastic scheduling vari-
able, EM algorithm

1. Introduction. Multi model approach proposed in 1969 is reasonable to be applied to
describing nonlinear systems [1], and in recent years, it has been widely applied to control
problem of nonlinear systems, identification and parameters estimation of nonlinear sys-
tems [2-6]. It is worth mentioning that as a typical multi-model system, linear parameter
varying (LPV) model [7-9] has great potential to model time-varying nonlinear systems, it
has been applied to approximating complex time varying systems successfully and much
work has been done in this area [9-14]. As well known, EM algorithm has attracted much
attention for the research work of estimation [15], and in [16], robust EM-type algorithms
are studied, and in [17], estimation of linear composite quantile regression is investigated,
and many results have been obtained based on EM algorithm [18-21].

On another research front line, in real world, many chemical systems are nonlinear and
complex, such as petrochemical production processes, the basic and necessary work for
the system is estimation, and in this system, the operating trajectory can be described
by selecting some working points, which is known as scheduling parameter. With the
help of scheduling parameter, the system will be estimated using EM algorithm. Some
attempt work has been done for system estimation by using known scheduling parameters
or parameters with missing data [8,23]. However, all these works are done based on time-
invariant scheduling parameters, it is avoidable that there are some sudden changes in
practice, or abrupt variations, and then, the system structure will be randomly changed,
which leads to time-varying scheduling parameters [24,25]. We take petrochemical produc-
tion process as an example, it is a high temperature production process, in such system,
coolant is added to control temperature of the reactor, and different temperature will lead
to different products, and then, the coolant flow can be used as a scheduling variable. For
the modeling of scheduling variable, due to different environment conditions, we will have
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different system structures for this modelling, and this motivates us to use Markov jump-
ing process to describe such changes, and it is much realistic to use stochastic scheduling
parameters in system estimation. This motivates us to do this work and contribution
of this paper is: random scheduling parameters are addressed here, and petrochemical
production process system is estimated under some abrupt changes conditions.

In this paper, we will do estimation on continuous stirred-tank reactor (CSTR) system
using EM algorithm; the rest of the paper is organized as follows: Section 2 describes
problem statement, in Section 3, the estimation procedure is given and a simulation
example is also given to show the effectiveness of our approach in Section 4, and finally,
some concluding remarks are given in Section 5.

2. Problem Statement. A nonlinear dynamic system is considered in this paper to
describe a nonlinear industrial process

f (ċk, ck, yk, uk, z(rk), u
′
k, T1:M , k, εk) = 0 (1)

where ck ∈ C ⊆ Rr and yk ∈ Y ⊆ Rl are system states and measured values at time k, uk ∈
U ⊆ Rm is input of the nonlinear process, εk is system noise, f(·) is a nonlinear function,
T1:M = {T1, T2, . . . , TM} represents different operating points, {rk} is a continuous-time
discrete-valued Markov chain, which takes values in a finite state space Λ = {1, 2, . . . , f},
z (rk) is a parameter with known initial value z0, it is a stochastic parameter which
represents the dynamics of system (1), and it is a scheduling variable of system (1) which
is described by system (2):

z (rk) = A (rk) z (rk−1) + B (rk) u′
k−1 (2)

where u′
k−1 ∈ U ′ ⊆ Rs is the input vector of system (2), and A (rk), B (rk) are known

time-varying system matrices with appropriate dimensions corresponding to the model at
time k. The transition probability from mode i at time k to mode j at time k+1 is defined
as πij (k) = P (rk+1 = j|rk = i), i, j ∈ Λ, and it satisfies πij (k) ≥ 0 and

∑f
i=1 πij (k) = 1.

It is worth mentioning that in this paper, uk, yk and T1:M are known in system (1),
while in system (2),

{
u′

k−1, A (rk) , B (rk) , πij (k)
}

are also given as a priori as well, then,
the observed data set of the process (1) can be represented as Cobs = {y1:N , u1:N , u′

1:N ,
z (r1:N)}, which will be used later.

3. Identification of Nonlinear System by EM Algorithm. The main task of this
paper is to do identification of system (1), with the help of multiple model approach to
express the nonlinear process, we choose ARX models to describe local models of system
(1) which is given below:

yk = θT
Ik

xk + ek (3)

where xk ∈ Rn represents the regressor of the system, which is expressed as

xk
∆
=
[
yk−1, yk−2, . . . , yk−na , u

T
k−1, u

T
k−2, . . . , u

T
k−nb

]T
(4)

where yk ∈ R1 and uk ∈ Rm are output and input of system (1) respectively, na and nb

are the orders of the output and input, and n = na + mnb, Ik is introduced to represent
the identity of the local model at sampling time k, ek is a zero mean Gaussian noise with
unknown variance σ2, and Ti (i = 1, . . . , M) denotes the ith operating point of nonlinear
system (1).

In the neighbourhood of small region for each operating point, a linear model is applied
to approximating the process dynamics. Given all the past information, probability of
the observed process output yk is calculated as:

p
(
yk|y1:k−1, u1:k−1, z (r1:k) , u′

1:k−1

)
=

M∑
i=1

αk,ip (yk|y1:k−1, u1:k−1, θi) (5)



ICIC EXPRESS LETTERS, VOL.11, NO.9, 2017 1463

where θi represents the parameter of the ith local linear model, αk,i = p
(
θi|y1:k−1, u1:k−1,

z (r1:k) , u′
1:k−1

)
in (5) is a normalized exponential function and it represents the probability

of the ith local model at sampling time k, which is written as below:

αk,i =

exp

(
−(z (rk) − Ti)

2

2(oi)
2

)
M∑
i=1

exp

(
−(z (rk) − Ti)

2

2(oi)
2

) (6)

where oi ⊆ R is the validity width of the ith local model, which is unknown and bounded,
and let oi,min ≤ oi ≤ oi,max, where oi,min and oi,max are the lower and upper bounders for oi.
The missing data set is denoted as Cmis = {I1:N}, and then the complete data is written
as {Cobs, Cmis} where I1:N is a hidden variable. The parameters which are necessary to
be estimated are Θ = {θ1:M , σ, o1:M}. From [13], the steps of the EM algorithm are as
follows.

1) Initialization: Given Θold as initial values.
2) E-step: Calculate the Q-function by using the current parameter Θold as below

Q
(
Θ|Θold

)
= ECmis|(Cobs,Θold){log p(Cmis,Cobs|Θ)} (7)

3) M-step: Maximize the Q-function,

Θ = argmax
Θ

Q
(
Θ|Θold

)
(8)

and then, set Θold = Θ.
4) Iterate: Repeat steps 2) and 3) until it is convergent. By applying the EM algorithm,

and using the probability chain rule, the complete likelihood function p (Cmis, Cobs|Θ) of
(7) is decomposed as

log p (Cmis, Cobs|Θ) = log p
(
y1:N , u1:N , z (r1:N) , u

′

1:N , I1:N |Θ
)

= log

(
N∏

k=1

p
(
yk|xk, z (r1:k) , u

′

1:k, I1:k, Θ
)
· p (Ik|z (r1:k) , I1:k−1, Θ)

× p
(
u1:N , z (r1:N) , u

′

1:N |Θ
))

=
N∑

k=1

(log p (yk|xk, ΘIk
) + log p (Ik|z (rk) , ΘIk

) + log C)

(9)

and

Q
(
Θ|Θold

)
= ECmis|(Cobs,Θold){log p(Cmis,Cobs|Θ)}

=

∫
p
(
I1:N |Θold, Cobs

) N∑
k=1

(log p (yk|xk, ΘIk
) + log p (Ik|z (rk) , ΘIk

) + log C) dI1:N

=
N∑

k=1

M∑
i=1

p
(
Ik = i|Θold, Cobs

)
log p (Ik = i|z (rk) , oi)

+
N∑

k=1

M∑
i=1

p
(
Ik = i|Θold, Cobs

)
log p (yk|xk, θi, σ)

+
N∑

k=1

M∑
i=1

p
(
Ik = i|Θold, Cobs

)
× log C

(10)
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where u1:N , z (r1:N) and u
′
1:N are independent of Θ, and C = P

(
u1:N , z (r1:N) , u

′
1:N |Θ

)
is

a constant. To compute the Q-function in (10), the following probability functions will
be calculated: 1) p (yk|y1:k−1, u1:k−1, θi, σ); 2) p

(
Ik = i|Θold, Cobs

)
.

Considering Gaussian noise in ARX model, function p (yk|y1:k−1, u1:k−1, θi, σ) is ex-
pressed as:

p (yk|y1:k−1, u1:k−1, θi, σ) =
1√
2πσ

exp
−1

2σ2

(
yk − θT

i xk

)T (
yk − θT

i xk

)
(11)

where p
(
Ik = i|Θold, Cobs

)
is the probability of the Ik = ith local model at sampling time

k, under known conditions of Cobs and the current parameter Θold, by using Bayes’ rule,
p
(
Ik = i|Θold, Cobs

)
is expressed as:

p
(
Ik = i|Θold, Cobs

)
=

p
(
yk|y1:k−1, u1:k−1, θ

old
i , σold

)
p
(
Ik = i|z (rk) , oold

i

)
M∑
i=1

p
(
yk|y1:k−1, u1:k−1, θold

i , σold
)
p
(
Ik = i|z (rk) , oold

i

) (12)

and then,
p (Ik = i|z (rk) , oi) = αk,i (13)

Combining (11), (12) and (13), then, the Q-function is fixed. Do derivative to Q
(
Θ|Θold

)
,

the parameters θi, σ and oi in (10) are calculated, and then, we have

∂

∂θi

N∑
k=1

M∑
i=1

p
(
Ik = i|Θold, Cobs

)
log p (yk|y1:k−1, u1:k−1, θi, σ) = 0 (14)

By solving (14), we have θNew
i , and it holds that

θNew
i =

N∑
k=1

p
(
Ik = i|Θold, Cobs

)
xT

k yk

N∑
k=1

L∑
l=1

PrΘcu (Ik = i|z (rk) , Cobs) xT
k xk

(15)

Similarly, we will also get
(
σNew

)2
, where

(
σNew

)2
=

N∑
k=1

M∑
i=1

p
(
Ik = i|Θold, Cobs

)((
yk −

(
θNew

i

)T
xk

)T (
yk −

(
θNew

i

)T
xk

))
N∑

k=1

M∑
i=1

p (Ik = i|Θold, Cobs)

(16)

Let Ik = ith, for the validity width of the ith local model, the mathematical formulation
of the optimization problem in searching for the optimal oi is given in (17):

max
oi,i=1,2,...,M

N∑
k=1

M∑
i=1

p
(
Ik = i|Θold, Cobs

)
log p (Ik = i|z (rk) , o)

(omin ≤ oi, i = 1, 2, . . . , M ≤ oi,max)
(17)

Remark 3.1. Similar to [12,14], then, the optimal oi is searched by a constrained non-
linear optimization function which is “fmincon”.

4. Numerical Example. In our paper, we assume A → B is an irreversible and exother-
mic reaction. The concentration of reagent A and the reactor temperature are outputs in
this system, coolant flow rate is input, and it is also the scheduling variable. The princi-
ple model and parameters of the process are derived in [12]. In this paper, five operating
points are pre-determined as 96, 100, 103, 106 and 109, respectively, and the model of
stochastic scheduling variable is given as:

z (rk) = A (rk) z (rk−1) + B (rk) u′
k−1
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where A (rk) =

[
0.196
0.2

]
, B (rk) =

[
0.801
0.8

]
.

The initial state is given as z0 = 97, and the real transition probability matrix is given
as

Π =

[
0.6 0.4
0.6 0.4

]
Here, white noise is given with variance of about 1.5%, and the noise-free output is

added to the simulated process output. Without knowing the parameters of each local
model a-priori, we apply the proposed algorithm to the input-output data and the self-
validation results of CSTR model are obtained as shown in Figure 1, while Figure 2 shows
the cross-validation results of CSTR model, and it demonstrates that the estimated curve
tracks the real curve effectively. We also use the relative error [26] to measure the model
quality,

ERR =
var (y − ŷ)

var(y)
∗ 100% (18)

where y is the true output and ŷ is the estimated output. It is observed from Figures 1 and
2 that the relative error of self-validation is 1.14%, the relative error of cross-validation
is 4.14%, and the estimation error is small which shows the effectiveness of the methods
proposed.
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Figure 1. The self-validation results of CSTR model

5. Conclusions. The identification of nonlinear industrial system using a stochastic
scheduling variable is studied by using EM algorithm and multi-model approach. The
LPV model is addressed to express the dynamic of local models. A simulation of CSTR
system is shown in this paper, which illustrates that the approach proposed in this paper
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Figure 2. The cross-validation results of CSTR model

is effective. In our future work, control problem will be considered on this system and
comparison with other related results will be given.
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