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ABSTRACT. This paper presents sliding mode tracking control for a class of uncertain
high-order dynamic systems with input constraints and external time varying distur-
bances. The input signals of systems are nonlinear saturation involving unknown param-
eters. The sliding mode controller using differential evolution optimization algorithm is
proposed for the unknown parameters estimation and the tracking controller is robust to
the time varying external disturbances. The design of auziliary subsystem in the sliding
mode tracking systems realizes the compensation of the constrained input signals. The
effectiveness of the proposed approach is verified by simulations and the results exhibit
the high precision output tracking performances.
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1. Imtroduction. Tracking control for the uncertain systems has attracted extensive
attention in the research areas. One of the tracking control techniques is sliding mode
control (SMC), which is applied frequently and has been regarded as one of the effective
robust control methods for dynamic systems with model uncertainties. Due to the strong
robust properties, SMC is applied to a wide range of industrial areas for trajectory tracking
problems, including robotic manipulators system [1],vehicle systems [2,3], motor system
[4,5], power system [6] and chaotic system [7].

To achieve optimized tracking target for the uncertain systems, intelligent optimal
algorithms are introduced into the sliding mode tracking control. The tracking technique
has been developed on the basis of optimization algorithm, such as genetic algorithm [8]
and particle swarm algorithm [9,10]. SMC using the intelligent algorithms solves a class
of tracking problems, when the structural information of dynamic systems is limited and
the parameters are uncertain, but these methods are difficult to solve a class of uncertain
systems, when the input signals are nonlinear constraint with uncertain parameters. The
limitations have strong effect on the convergence properties and tracking performances.

Differential evolution (DE) algorithm based on global search algorithm has good con-
vergence properties and search performance [11-13]. A comparative analysis of the perfor-
mance of particle swarm optimization (PSO) algorithms, firefly algorithm (FA) and DE
algorithms is shown in [14] and the results demonstrate DE is better than other optimiza-
tion algorithm for parameters estimation. Due to the advantages, DE algorithm is used
in a variety of industry areas to obtain faster convergence and accurate search properties,
such as back-analysis of tunnel response [15], robust H-infinity control [16], robot path
planning [17], permanent magnet synchronous motor control [18] and chaotic control [19].

DE optimization technique has features in faster convergence and precision estimation
and it was applied for controlling unconstraint actuators mostly, which the input signals
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of the system are not constraint. Due to the existence of “imperfect” actuators, input con-
straints are frequently encountered in engineering applications, such as input saturation
[20-22], input dead-zone [23-25] and input hysteresis [26]. To solve the constrained input
problems, the research work related to the effectiveness of SMC for dynamic systems with
input constraints has been demonstrated. For example, Zhang and Kurihara [27] designed
SMC with input dead-zone. Zhou and Chen [28] proposed sliding mode control based on
nonlinear disturbance observer to handle input saturation with system uncertainty, but
the saturation input signals with the unknown parameters are still hard to be dealt with
for tracking control.

This paper proposes sliding mode tracking control for the uncertain dynamic systems
with input constraints, unknown parameters and external time varying disturbances. To
deal with the unknown parameters incorporated into the constrained input signals, the
sliding mode controller using DE algorithm is presented to estimate the unknown param-
eters with fast convergence and accurate estimation. The designed auxiliary subsystem
provides compensation for the constrained input signals. The new system states which are
produced from auxiliary subsystems eliminate the undesired effects caused by the nonlin-
ear saturation constraints. The auxiliary subsystem in the feedback loop overcomes the
saturation nonlinearity. The stability of the tracking system is analyzed and the tracking
errors converge to the origin. Simulation verifies the effectiveness of the proposed sliding
mode tracking control method.

The paper is organized as follows. In Section 2, a description of uncertain dynamic
systems is given. In Section 3, sliding mode tracking control based on the differential
evolution algorithm and auxiliary system is designed and demonstrated. The effectiveness
of sliding mode tracking control synthesized differential evolution algorithm is verified in
Section 4. The conclusions are shown in Section 5.

2. Problem Formulation. Consider a class of higher-order uncertain dynamic system
as Equation (1)

( ) (I ) bu(t) +d(t)
y(t) = z1(t), t € [0, T] (1)

where z;, 1 = 1,2,...,n — 1 are the system state vectors, u(t) and y(t) are the control
input signals and system output signals respectively, f(x,t) is known linear function, and
b # 0 is the unknown parameter. The time-varying disturbance variable d(t) is bounded
as |d(t)] < D and D is positive constant. Considering the saturation input u(t) = sat(v)
is defined as shown in Figure 1, where v is referred to as the designed control law v(t)
with upper bound and lower bound, and u,., > 0 is a known constant. To facilitate the
tracking controller design, some assumptions are presented as follows.

Assumption 2.1. The desired output trajectory yq(t) is differentiable with respect to time
t and all of the higher-order derivatives are available.

Aiming to track the desired trajectory in high precision, the sliding mode controller
provides u(t) for the uncertain dynamic systems with a prescribed accuracy parameter y,
which is sufficiently small, as follows

ly(t) —ya(t)| < p

The constraint input signals are nonlinear saturation and involve unknown parameter.
This means the sliding mode controller both needs to overcome the input constraints and
estimate the unknown parameters.
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FIGURE 1. Input saturation constraints

3. Sliding Mode Tracking Control with Input Constraints and Stability Analy-
sis. In this section, sliding mode tracking controller is designed for the uncertain dynamic
system with input saturation, unknown parameters, and time varying disturbances. The
tracking controller for the constraint input incorporating unknown parameter is designed
to overcome uncertain nonlinear limitation; therefore, the auxiliary system and differential
evolution (DE) algorithm are applied to the design of sliding mode tracking control sys-
tem. The auxiliary system provides compensation for constraint input and the differential
evolution (DE) algorithm is utilized to approach the unknown parameters.

3.1. Derivation of sliding surface. Sliding surface is given as Equation (2)

s(t) = cre(t) + cpé(t) + - - + e V(1) = Z cie(t)D 2)
i=1
where the tracking system output errors e(t) = y(t) — yq(t) and parameters ¢y, ¢, ..., ¢,

are positive constants and Hurwitz. The tracking errors are also described as e(t) =

y(t) = ya(t) = 21(t) — ya(t)-
Equation (3) is obtained by the differential of both sides of Equation (2)

§(t) = c16(t) + c26(t) + - + cpe™(t) = i cie(t)® (3)

Equation (3) is further expanded as Equation (4)

(1) = eafoa(t) = gual®)] + calas(t) = a®)] + -+ a [ £l 1) + bu(t) + d(t) — " (1)]

=Y e = D el + el 1) + but) + d(e) (@)

The sliding variable dynamics is given as Equation (4). The condition, s(t) = 0, converges
the system states to move within the sliding manifold.

3.2. Differential evolution algorithm. Differential evolution algorithms use a simple
differential operator to create new candidate solutions and employ a one-to-one competi-
tion scheme to greedily select new candidates [29]. The key steps of differential evolution
algorithm are mutation, crossover, and selection. The initial individuals satisfying con-
straints are generated by adding normally distributed random deviations as Equation
(5)

SL’Z](O) = rcmdij (0, 1) (QZlUJ — .fL’L) + SL’L (5)

i i
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where z;;(t) 4,5 = 1,2,3,..., NP is each target vector, x% and xfj are the upper and lower
bounds of the jth component among total components respectively, and rand,;(0,1) is a
random decimal within [0, 1]. Differential evolution algorithms generate a mutate vector
by adding the weighted difference of two vectors to the third vector as Equation (6)

hij(t 4+ 1) = 2p,3(t) + F (2,5 (t) = 235 (t)) (6)
The integer indexes randomly are selected as p;, ps, p3 are mutually different and also
chosen to be different from the running index ¢ referred to the ith candidate in the
population consisting of n candidates and ¢ is denoted generation counter. The target
vector, x,,;(t) in this case, is a random individual and z,,;(t), x,,;(t) are two randomly
selected individuals in the current population. The scale factor F' > 0 controls the
amplification level of the differential variation. The trial vector is defined component-
wise as a binomial crossover operator as Equation (7)

. hw(t + 1), Tandlij S CR
vig(t+1) = { xi;(t), otherwise (7)
where randl;; is a random number generated by using the uniform probability distribution
in the range 0-1. The crossover constant CR € [0, 1] is to be determined by the user.
If the trial vector is measured to be better by the fitness function, the trial vector will
replace the target vector; otherwise, x;(t) is retained as Equation (8).
_ Jut+1), flu(t+1) < fz(t)
zi(t+1) = { x;(t), otherwise (8)
Mutation, crossover, and selection will repeat until the update reaches to the maximum
number of iteration GG. The differential evolution optimization algorithm is depicted in
Figure 2. To estimate the unknown parameter, the tracking system will be rewritten as
Equation (9)
Y (t) = bu(t) (9)
The optimization criterion J is designed as Equation (10)

J = Z % (i —90)" (yi — 9i) (10)

where N is the total number of test data, y; = Y (i), ¢ = 1,2,...,n — 1. The true
parameters vector is b and b is the estimation parameters vector. Then we have }ir% b=1b,
when criterion J approaches to zero.

3.3. The auxiliary system design of sliding mode control with input con-
straints. The auxiliary system is given by Equation (11)

Ai(t) = —mii(t) + A (t)

An(t) = —mp A (t) + bAu(2) (11)
where \;, ¢ = 1,2,...,n — 1 is auxiliary state vectors and m; > 0,¢=1,2,...,n—1 and
input constraint deviation is Au(t) = u(t) — v(t). Define

0 —-my 1 e 0

A — . . . . .
0 . e T Mp—1 1
0 B, ... —my,

where A is Hurwitz and Awu(t) is bounded, tlim Ai(t) = 0 is obtained. In the uncertain

dynamic systems, the constraint input and unknown parameter affect the sliding mode
control stability. New states produced by the auxiliary system are added into the output
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FiGure 2. Differential evolution algorithm

tracking error, aroused by the error amplification method. The input signals with con-
straints are compensated by using the auxiliary system. The output error e(t) is redefined

as e(t) = y(t) — ya(t) — Ai(t) and e™(t) = y™(t) — yc(ln) (t) — Aﬁ”) (t). Correspondingly,
Equation (3) is redefined as Equation (12)

$(t) = 16(t) + 6(t) + -+ + cne™(t) = D ce(t)? (12)
i=1
The above equation can be further expanded as Equation (13)
ﬂwquﬂ%wmydﬁﬂ+@Pﬁyﬁmydﬁﬂ+m+%h@ﬂ+m@

(1) — i (8) = A (1)

= ni civip(t) — 2": Ciyc(li)(t> - ”i Cz’Agi) (t) + f(x,t) 4+ bu(t) + d(t) — bAu(t)

n

. <_1)n+w[ S (Hm;fﬂAk (13

k=1 i1+io+-+ig=n+1—k \j=1

i;=0,1,....n+1—k j=12. .k k=12 .n
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where ¢, = 1, so the coefficients ¢, will be omitted to simplify the equation presentation.

Theorem 3.1. For system (1) with the input nonlinear saturation incorporate unknown
parameters, the sliding mode controller using DE algorithm added auxiliary system is
designed as

Z ciwip1(t) + i cl-yd )+ Z c,)\gz) f(xz,t)
=1 =1 o lM(t)
+ Z ik [ Z (H m?)] Ak — nsgn(s)
=1

i1+ig+Fig=n+1-k

M) = =5 i)+ 3l ) + 5 o)~ a0
D EIE NP SN 1 () | P i

i1+io+-tig=n+l1—Fk

e
o
~
S—
I
S|

and the design parameters are chosen as n > D. Then we have the results as follows
xz()—>yc(; 1)( t),i=1,2. t— o0

Proof: The stability of the tracking system is proved using Lyapunov analysis. Con-
sider the Lyapunov function as Equation (15)

1
V = 582 (15)

The derivative of Lyapunov function with respect to time ¢ is given by Equation (16)
V = s$
n—1 n
= s{ Zcixiﬂ(t) — chyd Zc, AD @) + Fa,t) + bu(t) + d(t) — bAu(t)

gz (1))

k=1 i14io4Fip=n+1-k \j=1
n—1 n n—1
= s{ Z ciwi () — Zciyc(;)(t) — ZCZ)\( (t) + f(z,t) + bu(t) + d(t)
1 i=1 i=1

-—<4WH1 2 (ﬁm)

i1+ig+-Fig=n+1—k \j=1 }

n—1 ~ ~
; b+b—1b
:s{zywﬁl Z}Mi E:Q D)+ f(x,t) + _7T_M@+d@

k
_Z(_l)n+1 k Z <Hm;y) )\k}
k=1 i1+ig+Fig=nt+l-k \j=1
b—b
< |s] IM(8)[ + [s[|d(t)] — nls] (16)

when J is sufficiently small, we have

mnﬁ—ﬂzo

J—0
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Finally, V' < D|s| — n|s| < 0; therefore, the system is stable and the tracking errors
converge to zero on the sliding manifold.

4. Simulation. To verify the tracking performances of the proposed algorithm, we con-
sider a motor dynamic system with time-varying disturbances and the time-varying dis-
turbances and actuators defections will exaggerate the input saturation nonlinearity. The
input signals combined with unknown parameters will be constrained over the tracking
period continuously. The complicated case is shown with the motor systems [30] as follows

(1) = bu(t) + d(t)

The input signal u(t) is constrained with saturation parameter |up.x] = 0.43 and the
time-varying disturbance is 10sin(f). SMC using DE algorithm estimates the unknown
parameter b, and the process of dynamic optimization criterion J for uncertain parameter
b is presented in Figure 3(a). In this simulation example, the scale factor is F' = 0.7.
Crossover probability is chosen to be CR = 0.6 and the size of the population is 50. The
maximum number of iteration is 200 and the true value of estimation parameter is b = 23.
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0.005 \ . T'L_,
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Iteration Tteration

(a) (b)

Best J
Best J

F1GURE 3. (a) Optimization criterion J in motor system using DE, (b)
optimization criterion J in motor system using PSO

The estimation result in Figure 3(a) is b = 23 and J; = 0. The simulation shows the
results of the tracking output performance using DE algorithm for uncertain dynamic
systems with constraint input incorporating unknown parameters. Compared to the PSO
algorithm shown in Figure 3(b), although the result is b = 23 and J; = 0, it is clear
that DE algorithm has much faster convergence to the zero. Figure 4 displays the control
input signals with saturation constraints and corresponding input compensation signals
from the auxiliary system. Tracking of the system output angle signals and speed signals
corresponding to the desired trajectory in motor system is demonstrated in Figure 5 and
Figure 6. It shows that the system product output signals track the desired trajectory
in high precision despite the input nonlinear saturation and time-varying disturbance.
Although there exist nonlinear saturation constraints and time-varying disturbance, the
desired trajectory tracking results show accurate tracking performance. The output track-
ing errors converge to origin in faster convergence, which verifies the proposed algorithm’s
effectiveness.
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FIGURE 7. (a) Control input and angle tracking in the motor system, (b)
control input and speed tracking in the motor system

The sliding mode controller using DE and auxiliary compensation provides a steady
tracking in high precision. As shown in Figure 7, the surface created from constraint
input signal and position and speed tracking signals is smooth without sharp oscillation,
eliminating the chattering and disturbance effects. Although the control input signals are
defected over the tracking period, the stable accurate tracking trajectory is obtained as
shown in Figure 7.
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5. Conclusions. In this paper, sliding mode tracking control method using differential
evolution algorithm based on the auxiliary subsystems is proposed for a class of uncertain
dynamic systems with input constraints combined with unknown parameters and external
time varying disturbances. Differential evolution algorithm and an auxiliary subsystem
are incorporated into the design of the sliding mode tracking controller, dealing with
the nonlinear input constraints with unknown parameters. The unknown parameters
estimation is accurate by the sliding mode tracking controller using DE algorithm. The
saturation constraints of the input are compensated by the design of auxiliary subsystem
in the tracking control system. The stability of the tracking system is proved and analyzed
on the basis of Lyapunov approach. The simulation shows output tracking performance
at high precision with fast convergence. For other input constraint in dead zone will be
researched in the future.
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