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Abstract. The modified Smith predictor is well known as an effective time-delay com-
pensator for a plant with large time delays, and several papers on the modified Smith
predictor have been published. The parameterization of all stabilizing modified Smith pre-
dictors for minimum-phase time-delay plants is obtained by Yamada and Matsushima.
However, they do not examine the parameterization of all stabilizing modified Smith pre-
dictors for non-minimum-phase time-delay plants. The purpose of this paper is to expand
the result by Yamada and Matsushima and to propose the parameterization of all sta-
bilizing modified Smith predictors for non-minimum-phase time-delay plants. Finally,
control characteristics of the control system using obtained parameterization of all stabi-
lizing modified Smith predictors are also given.
Keywords: Non-minimum-phase system, Time-delay system, Smith predictor, Param-
eterization

1. Introduction. In this paper, we examine a design method for stabilizing modified
Smith predictors for non-minimum-phase time-delay stable/unstable plants. Smith pre-
dictor is well known as an effective time-delay compensator for a stable plant with large
time delays [1-13]. The Smith predictor in [1] cannot be used for time-delay plants hav-
ing an integral mode, because a step disturbance will result in a steady state error [2-4].
To overcome this problem, Watanabe and Ito [4], Astrom et al. [9], and Matusek and
Micic [10] proposed a design method for a modified Smith predictor for time-delay plants
with an integrator. Watanabe and Sato expanded the result in [4] and proposed a design
method for modified Smith predictors for multivariable systems with multiple delays in
inputs and outputs [5].

Because the modified Smith predictor cannot be used for unstable time-delay plants
[2-11], Paor [6], Paor and Egan [8] and Kwak et al. [12] proposed a design method for
modified Smith predictors for unstable time-delay plants. Thus, several design methods
of modified Smith predictors have been published.

On the other hand, another important control problem is the parameterization problem,
the problem of finding all stabilizing controllers for a plant [14-25]. The parameterization
of all stabilizing controllers for time-delay plants was considered in [22-25], but that of all
stabilizing modified Smith predictors was not obtained. Yamada and Matsushima gave
the parameterization of all stabilizing modified Smith predictors for minimum-phase time-
delay plants [26]. Since the parameterization of all stabilizing modified Smith predictors
was obtained, we could express previous studies of modified Smith predictors in a uniform
manner and could design the modified Smith predictors systematically. Uren and Schoor
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illustrated the context and categories of predictive PID control strategies applied to non-
minimum phase systems in [27]. In addition, Smith predictor structure for non-minimum-
phase has been proposed simply in [27]. However, the parameterization of all stabilizing
Smith predictor for non-minimum-phase time-delay stable/unstable plants has not been
obtained in [26,27]. Many time-delay plants are of non-minimum-phase. In addition,
the parameterization is a powerful tool to design controllers. The problem to obtain
the parameterization of all modified Smith predictors for non-minimum-phase time-delay
plants is important to solve.

The purpose of this paper is to expand the result in [26] and to propose the parame-
terization of all stabilizing modified Smith predictors for non-minimum-phase time-delay
plants. First, the structure and necessary characteristics of modified Smith predictors de-
scribed in past studies in [1-13] are defined. Next, the parameterization of all stabilizing
modified Smith predictors for non-minimum-phase time-delay plants is proposed for both
stable and unstable time-delay plants. Control characteristics of the control systems using
this parameterization are also given. This paper is organized as follows. In Section 2, the
modified Smith predictor is introduced briefly and the problem considered in this paper
is explained. In Section 3 and Section 4, the parameterizations of all stabilizing modified
Smith predictors for stable and unstable time-delay plants are given, respectively. The
parameterization of all stabilizing modified Smith predictors in Section 3 and in Section
4 is explained based on the frequency domain. A simple numerical example is illustrated
in Section 5. Finally, Section 6 concludes the paper.

Notation
R The set of real numbers.
C The set of complex numbers.
R(s) The set of real rational functions with s.
RH∞ The set of stable proper real rational functions.

2. Modified Smith Predictor. Consider the control system:{
y(s) = G(s)e−sT u(s) + d(s)
u(s) = C(s) (r(s) − y(s))

, (1)

where G(s)e−sT is the single-input/single-output time-delay plant with time-delay T > 0,
G(s) ∈ R(s), C(s) is the controller, y(s) ∈ R(s) is the output, u(s) ∈ R(s) is the
control input, d(s) ∈ R(s) is the disturbance and r(s) ∈ R(s) is the reference input.
G(s) is assumed to be coprime, that is, G(s) has no polez-zeros cancellation, and of
non-minimum-phase, that is, G(s) has zeros in the closed right half plane.

According to [1-13], the modified Smith predictor C(s) is defined by the form:

C(s) =
C1(s)

1 + C2(s)e−sT
, (2)

where C1(s) ∈ R(s) and C2(s) ∈ R(s). In addition, using the modified Smith predictor
in [1-13], the transfer function from r(s) to y(s) of the control system in (1), written as

y(s) =
C(s)G(s)e−sT

1 + C(s)G(s)e−sT r(s) (3)

has a finite number of poles. We call C(s) the modified Smith predictor if C(s) takes the
form of (2) and the transfer function from r(s) to y(s) of the control system in (1) has a
finite number of poles.

3. The Parameterization of all Stabilizing Modified Smith Predictors for Sta-
ble Time-Delay Plants. In this section, we examine the parameterization of all sta-
bilizing modified Smith predictors for stable time-delay plants. The parameterization is
summarized in the following theorem.
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Theorem 3.1. G(s)e−sT is assumed to be stable.
The parameterization of all stabilizing modified Smith predictors C(s) takes the form:

C(s) =
Q(s)

1 − Q(s)G(s)e−sT
, (4)

where Q(s) ∈ RH∞ is any function.

Proof: First, the necessity is shown. From the assumption that the controller C(s) in
(2) makes the transfer function from r(s) to y(s) of the control system in (1) has a finite
number of poles,

C(s)G(s)e−sT

1 + C(s)G(s)e−sT
=

C1(s)G(s)e−sT

1 + (C2(s) + C1(s)G(s)) e−sT
(5)

has a finite number of poles. This implies that

C2(s) = −C1(s)G(s) (6)

is necessary, that is,

C(s) =
C1(s)

1 − C1(s)G(s)e−sT
. (7)

From the assumption, we have

C(s)G(s)e−sT

1 + C(s)G(s)e−sT
= C1(s)G(s)e−sT , (8)

C(s)

1 + C(s)G(s)e−sT
= C1(s), (9)

G(s)e−sT

1 + C(s)G(s)e−sT
=

(
1 − C1(s)G(s)e−sT

)
G(s)e−sT (10)

and
1

1 + C(s)G(s)e−sT
= 1 − C1(s)G(s)e−sT . (11)

It is obvious that the necessary condition for all the transfer functions in (8), (9), (10)
and (11) to be stable is C1(s) ∈ RH∞. Using Q(s) ∈ RH∞, letting C1(s) be

C1(s) = Q(s), (12)

we find that C(s) takes the form of (4). Thus, the necessity has been shown. Next, the
sufficiency is shown. That is, if C(s) takes the form of (4) and Q(s) ∈ RH∞, from simple
manipulation, we have

C(s)G(s)e−sT

1 + C(s)G(s)e−sT
= Q(s)G(s)e−sT , (13)

C(s)

1 + C(s)G(s)e−sT
= Q(s), (14)

G(s)e−sT

1 + C(s)G(s)e−sT
=

(
1 − Q(s)G(s)e−sT

)
G(s)e−sT (15)

and
1

1 + C(s)G(s)e−sT
= 1 − Q(s)G(s)e−sT . (16)
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From the assumption that G(s)e−sT is stable and Q(s) ∈ RH∞, (13), (14), (15) and (16)
are all stable. In addition, because the transfer function from r(s) to y(s) of the control
system in (1) is written by (13) and Q(s) ∈ RH∞, the transfer function from r(s) to y(s)
of the control system in (1) has a finite number of poles. Thus, the sufficiency has been
shown. We have thus proved Theorem 3.1.

Next, we explain control characteristics of the control system using the parameterization
of all stabilizing modified Smith predictors C(s) in (4). The transfer function from the
reference input r(s) to the output y(s) of the control system in (1) takes the form

y(s) = Q(s)G(s)e−sT r(s). (17)

Therefore, for the output y(s) to follow the step reference input r(s) = 1/s without steady
state error,

Q(0)G(0) = 1 (18)

must be satisfied. In order for the output y(s) to follow the step reference input r(s) = 1/s
without steady state error, Q(s) is settled by

Q(s) =
q(s)

Go(s)
, (19)

where

q(s) =
1

(1 + sτ)α
, (20)

τ > 0, α is a positive integer that makes Q(s) in (19) proper and Go(s) ∈ RH∞ is an
outer function of G(s), that is, G(s) is factorized as

G(s) = Gi(s)Go(s), (21)

Gi(s) ∈ RH∞ is an inner function satisfying Gi(0) = 1 and Go(s) ∈ RH∞ is an outer
function. Because Go(s) is of minimum phase, Q(s) in (19) is Q(s) ∈ RH∞.

The disturbance attenuation characteristic is as follows. Using the parameterization
of all stabilizing Smith predictors C(s) in (4), the transfer function from the disturbance
d(s) to the output y(s) of the control system in (1) is given by

y(s) =
(
1 − Q(s)G(s)e−sT

)
d(s). (22)

Therefore, in order to attenuate the disturbance d(s) effectively, Q(s) must satisfy

Q(jωdi)G(jωdi) = ejωdiT (i = 1, . . . , nd), (23)

where ωdi ∈ C (i = 1, . . . , nd) are frequency components of the disturbance d(s), that is,
poles of d(s) are jωdi (i = 1, . . . , nd). When Q(s) is chosen as (19) and q(s) in (19) is
settled satisfying

q(jωdi) =
ejωdiT

Gi(jωdi)
(i = 1, . . . , nd), (24)

the control system in (1) can attenuate the disturbance d(s) effectively.

4. The Parameterization of all Stabilizing Modified Smith Predictors for Un-
stable Time-Delay Plants. In this section, we examine the parameterization of all
stabilizing modifed Smith predictors for stable time-delay plants.

The parameterization is summarized in the following theorem.

Theorem 4.1. G(s)e−sT is assumed to be unstable and to be of non-minimum-phase. For
simplicity, the unstable poles of G(s)e−sT are assumed to be distinct. That is, when si
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(i = 1, . . . , n) denote unstable poles of G(s), si ̸= sj (i ̸= j; i = 1, . . . , n; j = 1, . . . , n).
Under these assumptions, there exists Ḡu(s) ∈ RH∞ satisfying

Ḡu (si) =
1

Gs (si) e−siT
(i = 1, . . . , n), (25)

where Gs(s) is a stable non-minimum-phase function of G(s), that is, when G(s) is fac-
torized as

G(s) = Gu(s)Gs(s), (26)

Gu(s) is an unstable biproper minimum-phase function and Gs(s) is a stable non-minim-
um-phase function. Using these functions, the parameterization of all stabilizing modified
Smith predictors C(s) is written as

C(s) =
Cf (s)

1 − Cf (s)G(s)e−sT
, (27)

where Cf (s) is given by

Cf (s) =
1

Gu(s)

(
Ḡu(s) +

Q(s)

Gu(s)

)
(28)

and Q(s) ∈ RH∞ is any function. (Proof is omitted on account of space limitation).

Next, we explain control characteristics of the control system using the parameterization
of all stabilizing modified Smith predictors C(s) in (27). The transfer function from the
reference input r(s) to the output y(s) of the control system in (1) is written as

y(s) =

(
Ḡu(s) +

Q(s)

Gu(s)

)
Gs(s)e

−sT r(s). (29)

Therefore, when G(s) has a pole at the origin, for the output y(s) to follow the step
reference input r(s) = 1/s without steady state error,

Ḡu(0)Gs(0) = 1 (30)

must be satisfied. Because Ḡu(s) ∈ RH∞ satisfies (25), (30) holds true. This implies
that when G(s) has a pole at the origin, the output y(s) follows the step reference input
r(s) = 1/s without steady state error, independent of Q(s) ∈ RH∞ in (27). On the other
hand, when G(s) has no pole at the origin, for the output y(s) to follow the step reference
input r(s) = 1/s without steady state error,(

Ḡu(0) +
Q(0)

Gu(0)

)
Gs(0) = 1 (31)

must hold. From simple manipulation, if Q(s) is chosen satisfying

Q(0) = Gu(0)

(
1

Gs(0)
− Ḡu(0)

)
, (32)

then the output y(s) follows the step reference input r(s) = 1/s without steady state
error.

The disturbance attenuation characteristic is as follows: Using the parameterization of
all stabilizing Smith predictor C(s) in (27), the transfer function from the disturbance
d(s) to the output y(s) of the control system in (1) is given by

y(s) =

{
1 −

(
Ḡu(s) +

Q(s)

Gu(s)

)
Gs(s)e

−sT

}
d(s). (33)

Therefore, in order to attenuate the disturbance d(s) effectively, Q(s) is settled satisfying(
Ḡu(jωdi) +

Q(jωdi)

Gu(jωdi)

)
Gs(jωdi)e

−jωdiT = 1 (i = 1, . . . , nd), (34)
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where ωdi (i = 1, . . . , nd) are frequency components of the disturbance d(s), that is, poles
of d(s) are jωdi (i = 1, . . . , nd). When Q(s) is chosen satisfying (32), the step disturbance
d(s) is attenuated effectively.

5. Numerical Example. In this section, a numerical example for unstable non-minim-
um-phase time-delay plant is shown to illustrate the effectiveness of the proposed param-
eterization of all stabilizing modified Smith predictors.

Consider the problem finding the parameterization of all stabilizing modified Smith
predictors for the unstable non-minimum-phase time-delay plant G(s)e−sT written as

G(s)e−sT =
s − 20

(s + 2)(2s − 1)
e−0.5s, (35)

where

G(s) =
s − 20

(s + 2)(2s − 1)
(36)

and T = 0.5 [s]. G(s) is factorized by (26) as

Gu(s) =
2s + 1

2s − 1
(37)

and

Gs(s) =
s − 20

(s + 2)(2s + 1)
. (38)

One of Ḡu(s) satisfying (25) is given by

Ḡu(s) = −10.27(s + 0.125)

s + 19
. (39)

From Theorem 4.1, the parameterization of all stabilizing modified Smith predictors for
unstable non-minimum-phase time-delay plant G(s)e−sT in (35) is given by

C(s) =
Cf (s)

1 − Cf (s)
s − 20

(s + 2)(2s − 1)
e−0.5s

, (40)

where

Cf (s) = −2s − 1

2s + 1

(
10.27(s + 0.125)

s + 19
− 2s − 1

2s + 1
Q(s)

)
(41)

and Q(s) is any function.
In order for the output y(s) to follow the step reference input r(s) = 1/s and in order

to attenuate the step disturbance d(s) = 1/s effectively, Q(s) ∈ RH∞ is settled by

Q(s) =
0.2(s + 0.3242)

s + 2
. (42)

Substituting (42) for (41), we have

Cf (s) = −10.07(s + 1.385)(s + 0.7324)(s − 0.5)(s + 0.186)

(s + 19)(s + 2)(s + 0.5)2 . (43)

Using the obtained modified Smith predictor C(s) in (40) with Cf (s) in (43), the response
of the output y(t) for the step reference input r(t) = 1 is shown in Figure 1. Figure 1
shows that the control system in (1) is stable and the output y(t) follows the step reference
input r(t) = 1 without steady state error.

When the disturbance d(t) = 1 exists, the response of the output y(t) is shown in Figure
2. Figure 2 shows that the control system in Figure 1 can attenuate the step disturbance
effectively.
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In this way, we can design stabilizing modified Smith predictors easily using obtained
parameterization.

6. Conclusions. In this paper, we proposed the parameterization of all stabilizing mod-
ified Smith predictor for non-minimum-phase time-delay plants. First, the parameteriza-
tion of all stabilizing modified Smith predictors for stable time-delay plants was proposed.
Next, we expended the result of the parameterization for stable time-delay plants and
proposed the parameterization of all stabilizing modified Smith predictors for unstable
time-delay plants. Control characteristics of the control system using the parameteriza-
tion of all stabilizing modified Smith predictors were also given. In the future, we are
going to consider multiple input/output instead of single input/output of all stabilizing

Figure 1. Response for step reference input r(t) = 1

Figure 2. Response for disturbance d(t) = 1
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modified Smith predictors for non-minimum-phase unstable time-delay plants and the
parameterization will be given.
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