
ICIC Express Letters ICIC International c⃝2018 ISSN 1881-803X
Volume 12, Number 1, January 2018 pp. 79–86

CONCURRENT OPTIMIZATION OF WORKER AND TASK
ASSIGNMENT WITHIN U-SHAPED ASSEMBLY LINES

VIA ITERATED GREEDY ALGORITHM

Zikai Zhang1,2, Qiuhua Tang1,2,∗ and Liping Zhang1,2

1Key Laboratory of Metallurgical Equipment and Control Technology
2Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering

Wuhan University of Science and Technology
No. 947, Heping Avenue, Qingshan District, Wuhan 430081, P. R. China

∗Corresponding author: tangqiuhua@wust.edu.cn

Received July 2017; accepted September 2017

Abstract. When allocating tasks within U-shaped assembly lines, the ignorance of het-
erogeneous workers may result in the unaccomplishment of workload for the lack of skills
and even cause the current task assignment infeasible. Thus, this paper optimizes worker
assignment and task allocation within U-shaped assembly lines concurrently via an it-
erated greedy algorithm. In the algorithm, both task assignment and worker allocation
vectors are embedded for the concurrent optimization and multiple heuristic rules are
employed to extend the diversity of elements in the initial solution. A specified number
of tasks and workers are extracted and reinserted respectively in destruction and con-
struction phases for further exploration and exploitation. And the acceptance criterion
is modified based on the temperature in simulated annealing algorithm to avoid trapping
into local optima. Compared with optimal solutions by GAMS/Cplex and near-optimal so-
lutions by particle swarm optimization of the benchmark problems, computational studies
indicate that the iterated greedy algorithm shows excellent performance for small-scaled,
middle-scaled and large-scaled benchmark problems.
Keywords: U-shaped assembly lines, Assembly line balancing, Worker assignment, It-
erated greedy algorithm

1. Introduction. The U-shaped assembly line is increasingly utilized to produce high-
volume standardized products such as electronics and appliances. It consists of a series
of workstations connected by a U-shaped material handling system. These workstations
may perform assembly tasks at either entrance subline or exit subline, or complete jobs
first at entrance subline and then at exit subline. Any task for assembling these products
can be allocated as long as its immediate predecessors or immediate successors have been
completely assigned. Hence, the U-shaped line owns more allocation opportunity and
achieves higher productivity and better flexibility compared with the traditional straight
assembly line. The problem for balancing workload among these workstations is called
the U-shaped assembly line balancing problem (UALBP).

Each worker performing assembly tasks has different ability and agility. These assembly
skills play a determinant role on the processing time of assembly tasks [1]. The more skilled
it is, the shorter the processing time is. If a task is allocated to a less skilled worker,
this task may not be completed in a cycle time, causing the infeasibility of current task
assignment and even production break. On the contrary, allocating a task to a worker
with higher skills may lead to waste of production times. Thus, the assignment of multi-
skilled workers should also be considered in UALBP. However, worker assignment related
to UALBP has never been observed so far since it was first studied by Chaves et al.
[2]. And then many researchers studied the worker assignment in straight assembly line
[3-5]. Meanwhile, the iterated greedy algorithm (IG) is a local search method which has

79



80 Z. ZHANG, Q. TANG AND L. ZHANG

successful applications in discrete and combinational optimization problems. And the
main feature of the IG algorithm is its simplicity, which means that this algorithm does
not need to embed specific knowledge and has few control parameters [6]. Hence, this
paper focuses on developing an iterated greedy algorithm. This paper mainly contains
two contributions. (1) The new U-shaped assembly line worker assignment and balancing
problem (UALWABP) is defined and a set of benchmark problems is generated. (2) An
iterated greedy algorithm (IG) is developed to tackle the concurrent assignment of workers
and tasks within U-shaped assembly lines.

The organization of this paper is as the following. Section 2 defines UALWABP and
Section 3 describes the proposed iterated greedy algorithm to minimize cycle time. Section
4 reports the experimental results. Finally, Section 5 discusses the conclusion and future
work.

2. Problem Statement. Nowadays, most industries such as automotive and electronics
employ human to assemble tasks. And each assembly worker has different ability and
agility. These assembly skills play a determinate role on the processing time of assembly
tasks. Hence, workers and tasks are expected to be allocated into workstations simulta-
neously. As long as the worker occupying the workstation is suitable, the objective of
concurrent optimization is to improve the line efficiency by minimizing the cycle time.

Meanwhile, only one worker is allocated to a workstation and the number of workers is
equal to that of workstations. Each task is allocated into exactly one workstation which
locates either in entrance subline or exit subline. In a workstation performing tasks on
both sublines, walk times of workers in the workstation is negligible. All tasks allocated
to a workstation must be processed within the cycle time. Particularly, the precedence
relations among the tasks are known and the allocation of tasks needs to satisfy the
precedence relations.

3. Modified Iterated Greedy Algorithm. The iterated greedy algorithm (IG) is a
local search based meta-heuristic algorithm. It generates a series of solutions by repeating
greedy constructive heuristics. In the destruction phase some elements are removed from
the candidate solution and in the construction procedure they are reinserted back into the
solution for constituting a new candidate solution. Besides, a local search phase is added
to further improve the re-constructed solutions and an acceptance criterion is employed
to decide whether the newly candidate solution will replace the incumbent solution. This
procedure terminates till some predefined stopping criteria are met. Thus, a modified
iterated greedy algorithm is developed here to tackle the concurrent assginment problem
of workers and tasks within U-shaped assembly lines. Relative details of the proposed IG
are reported in the following.

3.1. Initialization and decoding. Since worker and task assignment are both involved,
the task assignment and worker allocation vectors are both necessary for the represen-
tation of a solution. It is worthy noting that rule-based initialization approaches may
promote the performance of solutions such as NEH (Nawaz-Enscore-Ham) heuristic for
flow shop scheduling. Hence, nine heuristic rules are integrated here to determine the as-
signment order of tasks, including the shortest processing time, longest processing time,
minimum total number of successor tasks, maximum total number of successor tasks,
maximum total time of successor tasks, minimum total time of successor tasks, maximum
total number of predecessor tasks, minimum total number of predecessor tasks and max-
imum total time of predecessor tasks. All the rules take values between one to the total
number of heuristic rules. The length of the task assignment vector is equal to the number
of tasks and the figure in the element represents the rule number. For worker allocation,
each element represents the worker being allocated into the sequenced workstations. As



ICIC EXPRESS LETTERS, VOL.12, NO.1, 2018 81

Figure 1. The presentation of the decoding and U-shaped layout

shown in Figure 1, both task assignment and worker allocation become encoded in a
solution.

Based on this representation, the decode mechanism is subtly designed to assign all
tasks into predefined workstations and to calculate the cycle time. While all tasks are
not allocated into workstations, the remained tasks satisfying the precedence relations are
selected into a candidate set and one task is chosen from the set according to the rule
number of the task assignment vectors. Sequentially, the processing time of this task is
determined on the ground of the worker allocation vector. If the new station time is not
more than the cycle time, this task is allocated directly into the current workstation or
otherwise the next.

3.2. Destruction and construction phase. In the destruction phase, d tasks and d
workers are respectively and randomly extracted from the incumbent solution. And these
extracted tasks and workers are respectively inserted into two lists of removed jobs Atask

and Bworker. Then in the construction phase, the tasks and workers in the two lists
Atask and Bworker are successively reinserted into the task assignment vector and worker
allocation vector respectively of incumbent solution. Note that the reinserted positions of
the tasks and workers must be different from their original positions and should satisfy the
precedence relation constraints. The destruction and construction methods are depicted
in Figure 2.

Figure 2. Destruction and construction



82 Z. ZHANG, Q. TANG AND L. ZHANG

In Figure 2, tasks 4, 6 and worker 1 are extracted from the original solution in destruc-
tion phase. And the remained task assignment and worker allocation are {1, 2, 9, 3, 5, 7, 8}
and {3, 2}. Then in construction phase, the extracted tasks 4, 6 are reinserted into the
remained task assignment. The new positions of task 4 and 6 are different from their
original positions. And the extracted worker 1 is reinserted with the same method. Thus,
the new generated task assignment and worker allocation are {1, 2, 9, 3, 4, 5, 7, 6, 8} and
{3, 2, 1}.

In the destruction phase, the choice of the d has a great influence in the performance
of the proposed algorithm. A small value of d makes it difficult to escape local optima
whereas a larger value of d may have the same effect as the randomly regenerated solution.
So it is significant to verify the value of d.

3.3. Local search phase. Since there are two sub-problems: task assignment and worker
allocation in the U-shaped assembly worker assignment and balancing problems, two
neighbor structures are developed to improve the performance of solution in local search
phase. These neighbor structures are depicted in Figure 3.

(1) Local search in task assignment. A neighbor solution is obtained by moving opera-
tor. In the moving operator, a task is randomly selected and moved to a different position
in the task assignment vector. Note that the moving operator should meet the precedence
relation.

(2) Local search in worker allocation. A neighbor solution is generated by swapping
operator. In the swapping operator, two different workers are randomly selected and their
corresponding workstations are exchanged in the worker allocation vector.

Figure 3. Moving and swapping operators

3.4. Acceptance criterion. After destruction, construction and local search phases,
the new solution is checked whether it can replace the incumbent one. Different from
the original acceptance criterion, this paper adopts a new acceptance criterion based on
the temperature in simulated annealing algorithm. If the new solution π2 is superior
to incumbent one, it replaces the incumbent one. If not, the new solution is accepted
with the probability of e(−∆/temp), where the constant temperature temp is calculated as
Equation (1).

Temp = T ×
∑NR

r=1

∑NI
i=1 tir

NR × NI × 10
(1)

In this equation, the parameter T is another parameter needed to be calibrated.

4. Result Comparison. Since the concurrent assignment of workers and tasks within
the U-shaped assembly lines is a new problem, this paper designs a set of benchmark
problems to test the proposed algorithm. These benchmarks include small-scaled prob-
lems (Bowman8, Jaeschke9, Jackson11, Mitchell21, Roszieg25 and Gunther35), medium-
scaled problems (Hahn53, Tonge70 and Lutz89) and large-scaled problems (Arcus111,



ICIC EXPRESS LETTERS, VOL.12, NO.1, 2018 83

Barthol148 and Scholl297). The original data of these problems come from the website:
<http://assembly-line-balancing.mansci.de/>. Similar to the approach in [7] the pro-
cessing times of tasks by worker h are randomly generated between [ti × 0.8, ti × 1.2], in
which ti is the original processing time. And the algorithm is encoded in C programming
language and is run on a computer with Intel(R) Core(TM) i5 CPU, 2.80GHz and 2.00GB
RAM.

4.1. Parameter calibration. Before the comparative experiments, this paper employs
Taguchi method to verify the parameters of the proposed IG. The verified parameters
are the number of extracted tasks d and the temperature parameter T. And the levels
are respectively set as: {4, 5, 6} and {0.3, 0.4, 0.5}. After designing the orthogonal array
for different levels and setting the average cycle time as the response value we run each
experiment for 5 times and obtain the results by Minitab 17. And the results are shown
in Figure 4.

Figure 4. SNR main effects plot

The signal to noise ratio (SNR) is the ratio of the value of objective function to the
variance value of objective function. The bigger the SNR is, the greater robustness the
parameter combination will have. Thus, the best combination of the parameters is: {d =
5, T = 0.3}.

4.2. Convergence analysis. To test the convergence of the proposed IG GAMS/Cplex
23.8 which can solve problems to optimality is selected. Taking account of computational
efforts, several small-scaled instances, Bowman8, Jaeschke9, Jackson11 and Mitchell21
are employed for the comparative analysis. The results are reported in Table 1.

Table 1. The comparative results between the GAMS/Cplex and IG

Case NW LBCT
GAMS/Cplex IG
CT CPU/s CT CPU/s

Bowman8 3 139 178 0.477 178 0.64
Jaeschke9 3 155 176 0.378 176 0.81
Jackson11 3 193 229 1.122 229 1.21
Mitchell21 5 165 197 6585.726 204 4.41



84 Z. ZHANG, Q. TANG AND L. ZHANG

Figure 5. The convergence analysis under different instances

It can be seen from Table 1 that in the instances of Bowman8, Jaeschke9, Jackson11,
the proposed IG algorithm obtains the same solutions as those of GAMS/Cplex and the
computational times of these two methods are very close. However, for a little bigger
instance of Mitchell21, the cycle time obtained by IG is slightly larger whereas the com-
putational time of IG is far less than that of GAMS/Cplex. These results suggest that
the IG algorithm obtains a better trade-off between solution quality and computational
efforts.

With respect to medium-scaled and large-scaled instances including Gunther35, Tong-
e70, Arcus111 and Scholl297, IG is solely utilized under the iteration criteria of Ni×Ni×20
millisecond and the solution of each generation is reported in Figure 5. It can be found
that in small-scaled instance (Gunther35), the cycle time is not updated in the iteration of
about 430; in medium-scaled instance (Tonge70), the cycle time is not further optimized
in the iteration of about 800; in large-scaled instances (Arcus111 and Scholl297), the cycle
time is not decreased in the iteration of about 624 and 672. Thus, it is concluded that
the proposed IG algorithm is gradually convergent to the lower bound and there is a
significant improvement in convergence with the increase of instance scale.

4.3. Performance comparison. To compare the performance of the proposed IG with
other population-based meta-heuristic algorithms, particle swarm optimization (PSO) is
selected and verified through the above parameter calibration method. The final popula-
tion size is set as 60 for 32 instances. Each case is respectively run 10 times under two
iteration criteria (Ni × Ni × 10 millisecond and Ni × Ni × 20 millisecond) for total 1280
experiments. The computational results are shown in Table 2. And the minimum and
average cycle times of PSO and IG are also depicted in Figure 6.



ICIC EXPRESS LETTERS, VOL.12, NO.1, 2018 85

Table 2. The comparative results of PSO and IG under different iterations

No. Case NW LBCT

Ni × Ni × 10 millisecond Ni × Ni × 20 millisecond
PSO IG PSO IG

Min Ave Min Ave Min Ave Min Ave
1 Roszieg25 3 438 475 495.7 471 476.7 469 490.6 469 476.6
2 Roszieg25 4 265 314 327.9 313 317.8 314 323.9 312 315.8
3 Roszieg25 6 158 218 224.4 209 211.9 217 224.4 204 211.2
4 Roszieg25 9 90 131 133 120 126.3 130 131.9 121 123.6
5 Gunther35 4 337 434 452.8 431 439.8 445 457.6 416 427.7
6 Gunther35 5 285 373 383.1 343 354.0 356 375.8 340 347.9
7 Gunther35 7 181 250 257.3 223 231.9 250 257.2 225 232.3
8 Gunther35 12 85 133 135.4 118 124.2 130 134.7 117 121.2
9 Hahn53 5 387 550 564.6 509 530.9 541 563.1 512 528.7
10 Hahn53 7 238 333 347.9 311 325.9 343 347.2 311 322.6
11 Hahn53 10 178 268 270.8 244 248.4 263 269.3 240 248.1
12 Hahn53 14 115 187 189.9 170 176.9 184 190.6 170 174.1
13 Tonge70 7 355 500 513.9 468 483.5 502 512.3 454 468.2
14 Tonge70 10 212 319 323.1 287 298.3 316 320.5 278 290.0
15 Tonge70 14 156 250 254.7 217 230.2 248 252.7 222 228.1
16 Tonge70 19 109 194 196.3 175 179.9 190 195.3 169 174.9
17 Lutz89 8 367 524 533.3 500 509.7 518 530.3 476 493.8
18 Lutz89 12 246 414 416.8 383 396.0 408 415.7 375 385.7
19 Lutz89 16 173 272 278.6 258 263.8 270 278.2 243 255.2
20 Lutz89 21 134 248 250.8 224 234.8 245 248.0 215 224.5
21 Arcus111 9 430 662 676.9 621 636.8 658 672.2 595 625.5
22 Arcus111 13 248 400 404.4 369 375.3 391 402.8 359 367.8
23 Arcus111 17 198 315 319.6 296 302.0 317 319.9 287 293.6
24 Arcus111 22 143 252 253.8 235 240.3 247 253.5 227 233.4
25 Barthol148 10 491 745 767.8 693 727.2 745 762.5 676 695.2
26 Barthol148 14 317 530 538.6 493 511.2 531 536.3 489 498.4
27 Barthol148 21 211 380 383.5 352 363.5 377 381.4 349 355.4
28 Barthol148 29 145 262 264.7 249 254.4 262 264.1 244 248.6
29 Scholl297 19 438 758 769.5 727 746.0 759 769.0 723 730.2
30 Scholl297 29 295 541 544.5 518 531.3 540 542.8 511 520.0
31 Scholl297 38 222 426 432.1 416 423.7 428 431.6 409 418.0
32 Scholl297 50 170 329 331.8 320 327.0 327 331.2 314 321.7

From the table, it can be seen that the proposed IG obtains better solutions for all
instances under two iteration criteria. Only under Roszieg35 within 3 workstations and
iteration criteria of Ni ×Ni × 20 millisecond, the minimum cycle time of PSO is equal to
that of IG. In other cases, IG finds smaller solutions in terms of the minimum and average
cycle time compared with PSO. And from Figure 6, the cycle time obtained by IG is below
that by PSO for all instances. Thus, it can be concluded that when dealing with small-
scaled, medium-scaled and large-scaled problems, IG is more efficient and effective than
PSO.

5. Conclusions. Due to different skill levels of workers on the U-shaped manual assembly
line, the processing time of each task may have multiple choices, and a waste of production
times or unexpected production break may arise. To ensure each workstation occupied
by a suitable worker and improve the line efficiency, an iterated greedy algorithm is
developed in which both workers and tasks are assigned cooncurrently into workstations



86 Z. ZHANG, Q. TANG AND L. ZHANG

Figure 6. The comparative analysis of PSO and IG for all instances

within the U-shaped assembly lines. In this algorithm, a union of multiple heuristic rules
is employed to ensure the diversity of elements in a solution. A specified number of tasks
and workers are extracted and reinserted respectively in destruction and construction
phases to explore the optimal solutions. The acceptance criterion is improved based
on the temperature in simulated annealing algorithm to avoid trapping into local optima.
Comparative experiments with GAMS/Cplex demonstrate that the proposed IG obtains a
better trade-off between solution quality and computational efforts. And for the medium-
scaled and large-scaled instances, the proposed IG shows strong convergence to the lower
bound and outperforms PSO in terms of efficiency and effectiveness.

Future research will be extended to address U-shaped assembly line worker assignment
and balancing problems in which walk time of workers should be considered. And the
collaboration between workers and machines can be extended to further enhance flexibility
and productivity.

Acknowledgement. The authors would like to thank the anonymous reviewers for their
helpful comments and constructive suggestions. This work is supported by National
Natural Science Foundation of China (No. 51275366, No. 51305311).

REFERENCES

[1] Ö. Mutlu, O. Polat and A. A. Supciller, An iterative genetic algorithm for the assembly line worker as-
signment and balancing problem of type-II, Computers & Operations Research, vol.40, no.1, pp.418-
426, 2013.

[2] A. A. Chaves, C. Miralles and L. A. N. Lorena, Clustering search approach for the assembly line
worker assignment and balancing problem, in Book Clustering Search Approach for the Assembly
Line Worker Assignment and Balancing Problem, 2007.

[3] P. T. Zacharia and A. C. Nearchou, A population-based algorithm for the bi-objective assembly line
worker assignment and balancing problem, Engineering Applications of Artificial Intelligence, vol.49,
pp.1-9, 2016.

[4] M. Vila̧ and J. Pereira, A branch-and-bound algorithm for assembly line worker assignment and
balancing problems, Computers & Operations Research, vol.44, pp.105-114, 2014.

[5] L. Borba and M. Ritt, A heuristic and a branch-and-bound algorithm for the assembly line worker
assignment and balancing problem, Computers & Operations Research, vol.45, pp.87-96, 2014.

[6] Q. K. Pan and R. Ruiz, An effective iterated greedy algorithm for the mixed no-idle permutation
flowshop scheduling problem, Omega, vol.44, no.2, pp.41-50, 2014.

[7] Z. Li, Q. Tang and L. Zhang, Minimizing energy consumption and cycle time in two-sided robotic
assembly line systems using restarted simulated annealing algorithm, Journal of Cleaner Production,
vol.135, pp.508-522, 2016.


