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Abstract. In this paper, new algorithms are introduced within the scope of agglomer-
ative hierarchical clustering free parameters, i.e., ALG (Average Linkage Dissimilarity
Increment Distribution-Global Cumulative Score Standart) algorithm. This algorithm
incorporates the cluster isolation dissimilarity increment technique and the cumulative
clustering technique between clusters globally. The result of ALG algorithm test on iris
dataset, wine dataset and WDBC (Wisconsin Diagnostic Breast Cancer) dataset using
cophenetic correlation validity value of 0.8693; 0.7708; 0.8337 and the value of silhou-
ette coefficient yields a value of 0.6785; 0.6278; 0.6787, this result shows ALG algorithm
outperformed LSS-GCSS (Local Standart Score-Global Cumulative Score Standart) algo-
rithm in previous research.
Keywords: ALG algorithm, Cluster, Dataset, Result, LSS-GCSS

1. Introduction. Clustering method is a fundamental problem that has been the focus
of great research in machine learning. Clustering is automatically formed by groups of
objects that are all interconnected. Therefore, the similarity between objects assigned to
the same cluster tends to be larger than in different groups [1,2]. Clustering is widely
used in many different fields such as astronomy, medicine, economics, weather, finance
and others [3].

Clustering is an important approach to finding commonality in data and placing the
same data into different clusters. Clustering divides the data set into multiple clusters
where the similarities in a group are larger than the different clusters [6]. The idea of
data clustering has a simple nature and is similar to the pattern of human thinking [4].
When we are given large amounts of data representation, we usually tend to summarize
this large amount of data into a small number of groups or categories for further analysis
[7]. In addition, most of the data collected in various problems will be seen to have some
inherent properties built on natural clusters [8].

Clustering hierarchy builds a cluster hierarchy or, in other words, a cluster tree, also
known as dendrogram. The hierarchical clustering methods are categorized into agglom-
erative (bottom-up) and divisive (top-down) [9,10]. Agglomerative clustering begins with
a single point cluster (singleton) and repeatedly combines two or more most appropri-
ate clusters. The divisive cluster starts with one cluster of all data points and repeats
the most appropriate clusters. The process continues until the termination criterion (the
number of k required from the cluster) is reached.

Research on cluster isolation has been done much earlier, among which [12] is about the
new criteria for cluster isolation based on the assumption of the inequality between neigh-
boring patterns within the cluster. The proposed criteria lead to potential dendrograms
that are different from those obtained by standard hierarchical procedures, based on the
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effect of pruning on the dendrogram branch. However, this study did not explain the
evaluation and validation of the proposed algorithm, so it has not been tested properly
and correctly.

Another study of Parameter-free in clustering [18], Parameter Free Minimum Span-
ning Tree (MST) clustering, that is used is based on two processes with minimum user
intervention; splitting the initial MST to get rough clustering, then fine tuning is done
through merging the neighboring clusters. This research demonstrated that MST based
clustering algorithm outperforms other clustering algorithms, including AHC and k-means
on datasets from the UCI machine learning repository. A fundamental weakness in this
technique is that it is not able to process datasets on a large scale and has not been tested
on other validation techniques such as cophenetic correlation coefficient and silhouette
coefficient.

Continued research on cluster isolation [13] that concerns different forms or different
data separation paradigms can be adequately modeled by exponential distributions when
analyzing differences in inequality between neighboring patterns; the average value of
the parametric model is closely related to the scarcity of data, regardless of the shape
of the orientation or its form. The number of clusters is intrinsically found without
requiring design parameter specifications or involving optimization processes that require
computation. Although succeeding in minimizing the gap increment in the dendrogram,
this second generation cluster isolation algorithm still has not used the value of evaluation
or validation of each cluster.

Another study of cluster isolation was also proposed [15] on a family with an agglomera-
tive hierarchical method based on high-order dissimilarity. The advantage of this method
compared to the traditional relationship algorithm is that they can automatically find the
number of clusters using the minimum description criteria. By comparison, traditional
algorithms require users to set the number of clusters or use some external criteria to
find them. This property leads to significant algorithmic performance improvements over
traditional grouping algorithms.

Recent research [16] on the issue of modeling the activities of learners in online dis-
cussion forums from a cluster-based perspective, led to highly context-dependent analysis
scenarios in which the actual number of clusters is a priori unknown. In order to avoid
user intervention in estimation number of clusters, which can easily lead to the emergence
of undesirable biases in the model obtained. The experimental results showed that the
LSS-GCSS (Local Standart Score-Global Cumulative Score Standart) algorithm is able to
provide optimal clustering solutions in the face of various grouping scenarios. The LSS-
GCSS algorithm is tested on UCI machine learning dataset, i.e., iris, wine and WDBC
yielding validation values of cophenetic correlation 0.568; 0.726; 0.4395 and the validation
value of silhouette coefficient 0.484; 0.392; 0.456.

It is observed from the study literature that the cluster isolation algorithm has evolved
from minimizing the gap margin of each cluster within the dendrogram and being able to
properly estimate the number of clusters, but in the validation of cophenetic correlation
coefficient and silhouette coefficient still get a small value, and this means there is still
an irreparable gap. This paper proposes ALG (Average Linkage Dissimilarity Increment
Distribution-Global Cumulative Score Standart) combination algorithm that will improve
gap in validation value of cophenetic correlation coefficient and silhouette coefficient.

2. A New Algorithm of Hierarchical Clustering. In this paper, it is introduced
of a new hierarchical clustering algorithm namely ALG (Average Linkage Dissimilarity
Increment Distribution-Global Cumulative Score Standart).

This new algorithm is the result of a combination of AHC (Agglomerative Hierarchical
Clustering) based on DID (Dissimilarity Increment Distribution) [15] and parameter-free
algorithm GCSS (Global Cumulative Score Standart) [16].
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Algorithm 1: ALG Algorithm
1: Input: dataset X and parameter H
2: procedure
3: Mp : Mp(i, j)
4: Select the most similar clusters (Ci, Cj)minDist=min{d(xi, xj) : xi∈Ci, xj ∈Cj}
5: if |Ci| < H and |Cj| < H then
6: Merge clusters Ci, Cj into a new cluster Cb using ALDID (Equation (4)) and

GCSS (Equation (7))
7: end if
8: if |Ci| ≥ H and |Cj| < H then
9: if dissinc(xi, xj, xk) = |d(xi, xj) − d(xj, xk)| of (Cj) is not in the tail then

10: the pdissinc(w; λ) (Equation (2)) then dissinc(xi, xj, xk)= |d(xi, xj)−d(xj, xk)|
of (Ci) then

11: Merge clusters Ci, Cj into a new cluster Cb using ALDID (Equation (4)) and
GCSS (Equation (7))

12: else
13: Do not merge Ci, Cj

14: end if
15: end if
16: if |Ci| ≥ H and |Cj| ≥ H then
17: Compute gap Ci(Cj) and gap Cj(Ci)
18: Compute DC(Ci), DC(Cj) and DC(Ci ∪ Cj)
19: if gap Ci(Cj) is in the tail of the pdissinc(w; λ) (Equation (2)) then
20: disinc(xi, xj, xk) = |d(xi, xj) − d(xj, xk)| of (Ci) then
21: Freeze cluster Ci

22: else if gap Cj(Ci) is in the tail of the pdissinc(w; λ) (Equation (2)) then
23: disinc(xi, xj, xk) = |d(xi, xj) − d(xj, xk)| of (Cj) then
24: Freeze cluster Cj

25: else if DC(Ci ∪ Cj) ≤ DC(Ci) + DC(Cj) then
26: Merge clusters Ci, Cj into a new cluster Cb using ALDID (Equation (4)) and

GCSS (Equation (7))
27: else
28: Do not merge Ci, Cj

29: end if
30: end if
31: until all pairs of clusters should not be merged

2.1. First step. Determining the proximity matrix (Mp) where the AHC method starts
with every single object in one cluster (single cluster M) and performs a series of merging
operations (M − 1 merging steps) [16].

Mp(X) =


0 dx1x2 · · · dx1x2

dx1x2 0 · · · dx1x2

...
...

. . .
...

dx1x2 dx1x2 · · · 0

 (1)

2.2. Second step. The DID was derived, using the Euclidean distance as the dissimi-
larity measure d(·, ·), under the hypothesis of Gaussian distribution of data. This distri-
bution was written as a function of the mean value of the dissimilarity increments, which
is denoted as λ [15].
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Specify the merging criteria based on AHC-DID [15].

• It is considered that Cj has M minus patterns and M patterns have more, if the
mean of the addition of Cj is less than the average α of Ci, i.e., the increase of Cj

at the tail of the DID Ci. If it does not fall on the tail, the Ci and Cj clusters are
combined; if not, then it keeps separated.

• Now, suppose Ci and Cj already have M or more patterns. So, check if gap Ci(Cj)
is behind the DID cluster Ci. When that happens, Ci is “frozen”, meaning Ci is no
longer available for merging with other groups. Similarly, tests for Cj with respect
to Ci are performed, but only if the preceding Ci is not “frozen”. Here it only allows
one cluster to be “frozen” in each algorithm iteration.

• In the end, if Ci or Cj is “not frozen”, for the cluster yielded from the merging of
Ci and Cj, Ci ∪ Cj, is calculated by the same procedure, with the assumption that
λij is the parameter of DID for cluster Ci ∪Cj. Now, if DC Ci ∪Cj has lower value
of DC(Ci) + DC(Cj) (the length of description to leave cluster which is separated),
cluster Ci and Cj is merged and forms new cluster; if not, the group is made separated
purposely.

DC(Ci) =
1

2
(1 − log(12)) + log λi +

1

2
log(I(λi)) − log p(w; λi) (3)

2.3. Third step. The assumption of the ALDID algorithm is to consider the newly
formed cluster, Cb = Ci ∪ Cj, obtained by combining Ci and Cj, and Ca is one of the
remaining groups formed in the preceding steps. Also, let us consider |Ci| and |Cj| as
the number of patterns on the Ci and Cj clusters, respectively. We define the ALDID
algorithm by characterizing the merging function, according to the size of the d ∗ (Ca, Cb)
distance between the clusters [15].

dA(Ca, Cb) =
|Ci|

|Ci| + |Cj|
d(Ci, Ca) +

|Cj|
|Ci| + |Cj|

d(Cj, Ca) (4)

2.4. Fourth step. GCSS algorithm in essence compares the closeness level of a new cu-
mulative hypothetical cluster (cdk) with the closeness level of cumulative of both prospec-
tive groups (cdi and cdj). The closeness level of cumulative compared to the context of
distribution of cumulative closeness level presented in each cluster, is modeled with the
procedure of cssk, cssi and cssj, respectively. Therefore, basically, if cdk involving an
increase in context Ck is higher than both in steps cdi and cdj involved in the context of
Ci and Cj (namely if cssk is higher than both cssi and cssj), Ci and Cj will not be suited
for global combination.

Firstly, let Cx be any given cluster in the dendrogram ∆ resulting from the agglomera-
tion process of the objects in X and let cdx be the sample consisting of its own cumulative
proximity level (cdx) and the cumulative proximity levels of its nested clusters in dendro-
gram ∆. The cumulative standard score statistic of cluster Cx(cssx) is defined as the
standard score of cdx with respect to dx [16]:

cssx =
cdx − cµx√
cσx − cµ2

x

(5)

where cµx and cσx are the first and second moments of cdx [16]:

µx =
1

ndx

ndx∑
l=1

cdxl, σx =
1

ndx

ndx∑
l=1

cd2
xl (6)
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cdxl the lth observation in cdx and ndx the length of cdx (i.e., the number of non-singleton
clusters nested within Cx).

The GCSS criterion determines that the union between Ci and Cj into a new cluster
Ck is a suitable merging if their cumulative standard score statistics (cssi and cssj) are
greater than or equal to the following dynamic merging threshold [16]:

gcssth(Ck, Ci, Cj, YMIN ) = gcssth(cssk, Ni, γi, µi, σi, Nj, γj, µj, σj, YMIN )

= csskΥ(Ni, Nj)ΨG(Ni, γi, µi, σi, Nj, γj, µj, σj, YMIN )
(7)

where cssk is the cumulative standard score of Ck, YMIN = 0.01N , γi = dij−di, γj = dij−dj

and µi, σi, µj and σj. The value of YMIN is defined as 1% of the number of clusters in C
(YMIN = 0.01Y ).

Therefore, the merging rule derived from the GCSS criterion is defined as follows [16].

• If the GCSS criterion is simultaneously met from both Ci (cssi ≥ gcssth(Ck, Ci, Cj,
YMIN )) and Cj (cssj ≥ gcssth(Ck, Ci, Cj, YMIN )), Ci and Cj merge into a new cluster.

• Otherwise, the merging between Ci and Cj is rejected in global terms, so that they
remain separated.

3. Evaluation of Clustering Result. This evaluation is intended to determine the
appropriate grouping solution, here using the index validity of silhouete coefficient and
cophenetic correlation coefficient.

3.1. Silhouete coefficient. The silhouette value for each point is a measure of how
similar that point is to points in its own cluster, when compared to points in other
clusters. The silhouette value for the ith point, s(i), is defined as [14]

s(i) =
b(i) − a(i)

max{a(i), b(i)}
(8)

The range of silhouette is [−1, 1] [14].

3.2. Cophenetic correlation coefficient (CPCC). Cophenetic correlation coefficient
measures the degree of similarity between Pc and the proximity matrix P . The cophenetic
matrix Pc is defined in such a way that the element Pc(i, j) represents the proximity level
at which the two data points xi and xj are found in the same cluster for the first time.
The CPCC index is defined as [5]

CPCC =
1
M

∑n=1
i=1

∑n
j=i+1 dijcij − µpµc√(

1
M

∑n=1
i=1

∑n
j=i+1 d2

ij − µ2
p

)(
1
M

∑n=1
i=1

∑n
j=i+1 c2

ij − µ2
c

) (9)

where M = n(n−1)
2

and µp, µc:

µp =
1

M

n=1∑
i=1

n∑
j=i+1

dij, µc =
1

M

n=1∑
i=1

n∑
j=i+1

cij (10)

where dij and cij are the (i, j) elements of matrices P and Pc, respectively. The CPCC
ranges from −1 to +1. The high value indicates great similarity between P and Pc [5].

4. Result and Analysis. This study uses the dataset of the UCI machine learning
repository [17], i.e.:

• Iris (N = 150)
• Wine (N = 178)
• Wisconsin diagnostic breast cancer (WDBC) (N = 96)
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Cluster analysis
From the clustering algorithm analysis of ALG algorithm there are 2 clusters in this

dataset, dendrogram in Figure 1 shows this algorithm can well be mapped every existing
object and compared with algorithm from previous research that LSS-GCSS showed a
significant increase, from validation value of cophenetic correlation coefficient experiences
an increase of ≥ 0.3 from the previous study and from the validation value of silhouette
coefficient increased ≥ 0.19 from the previous study.

In the wine dataset Figure 2, there is a greater amount of data than the iris dataset
and in the clustering context of objects within the denser wine density is more dense
and varied, from the results of ALG clustering algorithm analysis there are 2 clusters

Figure 1. Dendrogram dataset iris ALG algorithm

Figure 2. Dendrogram dataset wine ALG algorithm



ICIC EXPRESS LETTERS, VOL.12, NO.10, 2018 979

Figure 3. Dendrogram dataset WDBC ALG algorithm

Table 1. The results of the comparison of the validity of the silhouette co-
efficient and the cophenetic correlation coefficient, the LSS-GCSS algorithm
and the ALG algorithm

LSS-GCSS ALG
CPCC S CPCC S

Iris 0.568 0.484 0.8693 0.6785
Wine 0.726 0.392 0.7708 0.6278

WDBC 0.4395 0.456 0.8337 0.6787

in this dataset and compared with the algorithm from the previous research LSS-GCSS
showed a significant increase, from the validation value of cophenetic correlation coefficient
increased ≥ 0.04 from the previous study and from the validation value of silhouette
coefficient increased ≥ 0.23 from previous research.

In the WDBC dataset Figure 3, from the ALG clustering algorithm analysis results,
there are 2 clusters in this dataset and compared with the algorithm from the previous
research, LSS-GCSS showed a significant increase, from the validation value of cophenetic
correlation coefficient increased ≥ 0.39 from the previous research and from the validation
value of silhouette coefficient, an increase of ≥ 0.2 from the previous study.

Comparison of LSS-GCSS algorithm and ALG algorithm can be seen in Table 1. From
calculation of validation value using cophenetic correlation coefficient by testing in three
dataset variables results in increased precision by ALG algorithm of +0.3013 on iris
dataset, +0.0448 in wine dataset, +0.3942 on the WDBC dataset. An increase also oc-
curring in the validation calculation using silhouette coefficient on three dataset variables
results in improved precision by ALG algorithm of +0.1945 on the iris dataset, +0.2358
on the wine dataset, +0.2227 on the WDBC dataset.

5. Conclusions. Test results obtained that ALG algorithm successfully improved the
flexibility of cluster isolation. This is evidenced by the validation test results using cophe-
netic correlation coefficient and silhouette coefficient. The result of ALG algorithm com-
parison with algorithm from previous research is LSS-GCSS. Three datasets tested from
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UCI machine learning repository. The ALG algorithm outperforms the LSS-GCSS algo-
rithm across all datasets. From ALG algorithm test result with various dataset categories,
this algorithm proved able to overcome various scenarios with stable grouping getting the
highest value on measuring value of cophenetic correlation and silhouette.
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