NFA TO DFA CONVERSION: A NEW APPROACH USING LANGUAGES OF BOUNDED WORDS

Ho Ngoc Vinh ${ }^{1}$ and Nguyen Thi Thu Ha^{2}
${ }^{1}$ Information Technology Faculty
Vinh University of Technology Education
No 117 Nguyen Viet Xuan, HungDung, Nghe An, Vietnam
hongocvinh@gmail.com
${ }^{2}$ Department of E-Commerce Electric Power University
235 Hoang Quoc Viet, TuLiem, Hanoi, Vietnam
hantt@epu.edu.vn

Received March 2018; accepted June 2018

Abstract

In this paper, concepts of bounded words on an alphabet A, \diamond-languages and monoid \diamond-morphisms are introduced. Some basic results for recognizable languages and regular languages of bounded words on A are obtained. These allow defining an extension of the automaton on the set of bounded words. Hence, a new perspective of mathematical model of sets of states, edges, languages recognized by the finite automaton according to the length of languages is given and a new checking algorithm is proposed, greatly reducing the complexity of the checking algorithm.

Keywords: Bounded word, Monoid morphism, \diamond-automata, \diamond-recognizable, Algorithm

1. Introduction. The theory of formal languages, finite automata and complexity are modern branches in computer theory and their mathematical models play very important roles. There are a lot of works considering the relationship between these mathematical models. For example, a popular issue in studying the theory of formal languages and automata is checking whether the strings are recognized by a finite automaton. Many different checking algorithms have been proposed.

In this paper, we introduce the notions of bounded words on an alphabet A, \diamond-languages and monoid \diamond-morphisms (see also [3]). In addition, we give the new definitions of the regular \diamond-expressions, regular \diamond-languages and finite \diamond-automata. Hence, some basic results for recognizability of the \diamond-automata, (Proposition 3.1, Proposition 3.3), the relationship between regular language and regular \diamond-languages (Proposition 3.2), in special, the relationship between \diamond-automata, \diamond-recognizable and regular \diamond-languages are obtained. In Section 3, the algorithms of checking if a language L can be recognized by an automaton and their complexity are considered. Then, a new algorithm (Algorithm $4)$, with the \diamond-automaton approach, reducing the complexity compared with previous algorithms is proposed.
2. Languages of Bounded Words. At first, we recall some notions and notations; for more details, we refer to $[4,6]$. Let A be a finite alphabet and the set $B=\{0,1\}$. The sets of bounded words (\diamond-words) on A are $A_{\diamond}=\{(i, a, j) \mid a \in A$ or $a=\varepsilon, i, j \in B\}$ and $A_{\diamond}^{*}=\left\{(i, w, j) \mid w \in A^{*}, i, j \in B\right\} \cup\{\theta, e\}$. Then, each element $(i, w, j), w \in A^{*}$, is called a \diamond-word (or a bounded word with borders i, j) extended from w in which e, θ are two new elements as the unit, the zero of the monoid A_{\diamond}^{*} of all \diamond-words respectively. It is easily seen that, A_{\diamond}^{*} is a monoid by a product defined as follows: for any $x_{1}=\left(i_{1}, w_{1}, j_{1}\right)$,

[^0]$x_{2}=\left(i_{2}, w_{2}, j_{2}\right)$ in A_{\diamond}^{*}, if $j_{1}=i_{2}$ then $x_{1} \cdot x_{2}=\left(i_{1}, w_{1} w_{2}, j_{2}\right)$, else $x_{1} \cdot x_{2}=\theta$ and $\forall x \in A_{\diamond}^{*}$, $x . \theta=\theta \cdot x=\theta, x . e=e . x=x$.

We call A_{\diamond}^{*} the \diamond-monoid defined by A. A set $L \subseteq A_{\diamond}^{*}$ is called an extended language $(\diamond$-language) on A. Whenever none of mistakes are made, we also use notation $|x|$ as the length of x. In particular we make a convention: $|\theta|=-\infty,|e|=0$ and $|x|=0$ if $x \in\{(i, \varepsilon, j) \mid i, j \in B\}$. For $X, Y \subseteq A_{\diamond}^{*}$, left and right quotients are defined as $Y^{-1} X=\left\{u \in A_{\diamond}^{*} \mid \exists y \in Y: y . u \in X\right\}$ and $X Y^{-1}=\left\{u \in A_{\diamond}^{*} \mid \exists y \in Y: u . y \in X\right\}$. The function $\operatorname{Proj}: A_{\diamond}^{*} \rightarrow A^{*} \cup\{0\}$ is defined by $\operatorname{Proj}(e)=\varepsilon, \operatorname{Proj}(\theta)=0$ and $\operatorname{Proj}(i, w, j)=$ w (where $0 \notin A^{*}$ as the new zero of the monoid $A^{*} \cup\{0\}$).
Definition 2.1. Let M be a monoid with the unit 1 , the zero 0. Let $\varphi: A_{\diamond}^{*} \rightarrow M$ be a function. Then, φ is called a monoid \diamond-morphism (or \diamond-morphism for short) if it satisfies the following conditions:
(1) $x, y \in A_{\diamond}^{*}$ and $x . y \neq \theta$ then $\varphi(x . y)=\varphi(x) \cdot \varphi(y)$
(2) $\varphi(e)=1$
(3) $\varphi(\theta)=0$

Definition 2.2. Let $L \subseteq A_{\diamond}^{*}$ and M be a monoid. We say that M saturates L if there exists $a \diamond$-morphism $\varphi: A_{\diamond}^{*} \rightarrow M$ such that $L=\varphi^{-1}(N)$ for some $N \subseteq M$. In this case, we also say that L is saturated by φ.

From Definition 2.2, if $N_{1}, N_{2} \subseteq M$, imply that $\varphi^{-1}\left(N_{1} \cap N_{2}\right)=\varphi^{-1}\left(N_{1}\right) \cap \varphi^{-1}\left(N_{2}\right)$, $\varphi^{-1}\left(N_{1} \cup N_{2}\right)=\varphi^{-1}\left(N_{1}\right) \cup \varphi^{-1}\left(\bar{N}_{2}\right), \varphi^{-1}\left(N_{1} \backslash N_{2}\right)=\varphi^{-1}\left(N_{1}\right) \backslash \varphi^{-1}\left(N_{2}\right)$. Moreover, if φ is subjective, we have $\varphi^{-1}\left(N_{1}^{-1} N_{2}\right)=\varphi^{-1}\left(N_{1}\right)^{-1} \varphi^{-1}\left(N_{2}\right), \varphi^{-1}\left(N_{1} N_{2}^{-1}\right)=\varphi^{-1}\left(N_{1}\right) \varphi^{-1}$ $\left(N_{2}\right)^{-1}$.

For each $L \subseteq A_{\diamond}^{*}$, due to S. Eilenberg [1], we can apply a similar way to constructing a monoid M saturating L. We denote by $\mathcal{R}(A, M)$, the set of all \diamond-languages saturated by M on A_{\diamond}^{*}. According to [4], $\mathcal{R}(A, M)$ is closed under the boolean operations. Further, if φ is an epimorphism then $\mathcal{R}(A, M)$ is closed under the left quotients and right quotients.
3. Extended Recognizable Languages. In this section, we propose the notions of regular \diamond-expression and regular \diamond-language by following definitions.
Definition 3.1. Let A be a finite alphabet. A regular \diamond-expression on A_{\diamond}^{*} is defined recursively as follows.
(i) \varnothing, e, θ are regular \diamond-expressions.
(ii) $\forall a \in A$ or $a=\varepsilon, \forall i, j \in B,(i, a, j)$ is a regular \diamond-expression.
(iii) If E_{1} and E_{2} are the regular \diamond-expressions, then $\left(E_{1}+E_{2}\right), E_{1} \cdot E_{2}$ and E_{1}^{*} are the regular \diamond-expressions.
(iv) There is not any regular \diamond-expressions except the regular \diamond-expressions defined by (i), (ii) and (iii).

Then, we define regular \diamond-languages.
Definition 3.2. Let A be a finite alphabet. A regular \diamond-languages determined by the regular \diamond-expression E on A_{\diamond}^{*}, denoted by $L(E)$, is defined recursively as follows.
(i) $E=\varnothing$ then $L(E)=\varnothing$.
(ii) $E=e$ then $L(E)=\{e\}$.
(iii) $E=\theta$ then $L(E)=\{\theta\}$.
(iv) $E=(i, \varepsilon, j)$ then $L(E)=\{(i, \varepsilon, j)\}, \forall i, j \in B$.
(v) $\forall(i, a, j) \in A_{\diamond}, E=(i, a, j)$ then $L(E)=\{(i, a, j)\}$.
(vi) If E_{1} and E_{2} are the regular \diamond-expressions and $L\left(E_{1}\right)$ and $L\left(E_{2}\right)$ have been defined, $E=\left(E_{1}+E_{2}\right)$ then $L(E)=L\left(E_{1}\right) \cup L\left(E_{2}\right), E=E_{1} . E_{2}$ then $L(E)=L\left(E_{1}\right) \cdot L\left(E_{2}\right)$ and $E=E_{1}^{*}$ then $L(E)=L\left(E_{1}\right)^{*}$.
(vii) Only the \diamond-languages which are defined by (i), (ii), (iii), (iv), (v) and (vi) are regular \diamond-languages.

Combining with a finite automaton $\mathcal{A}=(A, Q, \delta, I, T)$, we define a special form of finite automata that accepts a set of \diamond-words on A_{\diamond}^{*} as follows.

Definition 3.3. Let $\mathcal{A}=(A, Q, \delta, I, T)$ be a nondeterministic finite automaton, we define a finite extended automaton (for brevity, \diamond-automaton) \mathcal{A}_{\diamond} by a 5 -tuple $\mathcal{A}_{\diamond}=\left(A_{\diamond}, Q_{\diamond}, \delta_{\diamond}\right.$, $\left.I_{\diamond}, T_{\diamond}\right)$ satisfying:
$-A_{\diamond}=\{(i, a, j) \mid a \in A, i, j \in B\} \cup\{e, \theta\}$ is considered as the alphabet of \mathcal{A}_{\diamond}.
$-Q_{\diamond}=\{(i, q, j) \mid q \in Q, i, j \in B\} \cup\left\{q_{\theta}\right\}$ is the finite nonempty set of the states, where q_{θ} is a new sink state.

- $I_{\diamond}=\{(i, q, j) \mid q \in I, i, j \in B\}$ is the set of initial states.
$-T_{\diamond}=\{(i, q, j) \mid q \in T, i, j \in B\}$ is the set of final states.
- Denote by $\mathcal{P}\left(Q_{\diamond}\right)$ the set of all subsets of Q_{\diamond}, then the transition function $\delta_{\diamond}: Q_{\diamond} \times$ $A_{\diamond}^{*} \rightarrow \mathcal{P}\left(Q_{\diamond}\right)$ is defined as follows: for any (i, q, j) in Q_{\diamond},
$\delta_{\diamond}((i, q, j), e)=(i, q, j)$ where $e \in A_{\diamond}^{*}$.
$\delta_{\diamond}((i, q, j), \theta)=q_{\theta}$ where $\theta \in A_{\diamond}^{*}$.
$\delta_{\diamond}\left((i, q, j),\left(j^{\prime}, a, k\right)\right) \ni\left(i, q^{\prime}, k\right) \Leftrightarrow \forall a \in A: \delta(q, a) \ni q^{\prime}$ and $j=j^{\prime}$, otherwise

$$
\text { if } j \neq j^{\prime} \text { then } \delta_{\diamond}((i, q, j),(l, a, k))=q_{\theta} .
$$

For simplicity, with $s, s^{\prime} \in Q$, we write $s . x$ instead of $\delta_{\diamond}(s, x), x=e, \theta$ or $x=(l, a, k)$, $a \in A$, and it can be extended inductively on length to any \diamond-word $x \in A_{\diamond}^{*}$: s.x $=$ $\mathrm{Y}_{s^{\prime} \in s . u, x=u . y} s^{\prime} . y$. A sequence $x_{1}, x_{2}, \ldots, x_{n}$ of \diamond-words in A_{\diamond}^{*} is said to be accepted by \mathcal{A}_{\diamond} if and only if there exists $q_{\diamond} \in T_{\diamond}$, such that $q_{\diamond} \in\left(\left(\left(q_{0} \cdot x_{1}\right) \cdot x_{2}\right) \ldots\right) \cdot x_{n}$ and in that case \diamond-word $x=x=x_{1} \cdot x_{2} \ldots x_{n}$ is said to be accepted by \mathcal{A}_{\diamond}. Denote by $\boldsymbol{L}\left(\mathscr{A}_{\diamond}\right)$ the set of all \diamond-words recognized by \mathcal{A}_{\diamond}, that is $\mathcal{L}\left(\mathscr{A}_{\diamond}\right)=\left\{x \in A_{\diamond}^{*} \mid \exists q_{0} \in I_{\diamond}\right.$ such that $\left.q_{0} \cdot x \cap T_{\diamond} \neq \varnothing\right\}$. We call a \diamond-language L to be accepted by \mathcal{A}_{\diamond} if $L=\boldsymbol{L}\left(\mathcal{A}_{\diamond}\right)$.

For brevity, from now on, we write finite \diamond-automaton (automaton) instead of nondeterministic finite \diamond-automaton (automaton).

Definition 3.4. A set $L \subseteq A_{\diamond}^{*}$ is called an extended recognizable language (or \diamond-recognizable) if $L=\mathcal{L}\left(\mathscr{A}_{\diamond}\right)$ for some finite \diamond-automaton \mathcal{A}_{\diamond}.

We call a language $L \subseteq A_{\diamond}^{*}$ a \diamond-recursive language if the membership problem for L is solvable. The following results are fundamental for the case of finite \diamond-automata which can be verified directly by definition.
Fact 1. If $L \subseteq A_{\diamond}^{*}$ is \diamond-recognizable then L is \diamond-recursive.
Let $L \subseteq A^{*}$, we build an extension operator of language $\diamond: L^{\prime}=\left\{(i, w, j) \in A_{\diamond}^{*} \mid w \in\right.$ $L, i, j \in B\}$ and $L_{\diamond}=L^{\prime}$ if $\varepsilon \notin L ; L_{\diamond}=L^{\prime} \cup\{e\}$ if $\varepsilon \in L$. A non-trivial relationship between \diamond-recognizable languages and recognizable languages is showed by Fact 2 below.
Fact 2. Let $L \subseteq A^{*}$. If L is recognizable by a finite automaton \mathcal{A} then L_{\diamond} is recognizable by a finite \diamond-automaton \mathcal{A}_{\diamond}, where \mathcal{A}_{\diamond} is a \diamond-automaton expanded form \mathcal{A}.

The properties above and the classical results confirm the equivalent of deterministic and nondeterministic finite automata. So, we have following corollary.

Corollary 3.1. Let $L \subseteq A_{\diamond}^{*}$. If L is recognizable by a finite \diamond-automaton then it is also recognizable by a deterministic finite \diamond-automaton.

Next, we will show some fundamental results for \diamond-automata, which can be proved classically similar to the methods used in [2,5,7]. Some results are well-known so their proofs are ignored in this paper.
Proposition 3.1. Let $L \subseteq A_{\diamond}^{*}$. Then L is \diamond-recognizable if and only if L is regular \diamond-language.

A non-trivial relationship between regular \diamond-languages and regular languages is shown by the following result.

Proposition 3.2. Given a regular language $L \subseteq A^{*}$. Then $\operatorname{Proj}^{-1}(L)$ is a regular \diamond language on A_{\diamond}^{*}. There exists L which is not a regular \diamond-language on A_{\diamond}^{*} but $\operatorname{Proj}(L)$ is a regular language on A^{*}.

Proof: By definition and assumption, $L=L(E)$ for some regular \diamond-expression E. We will prove by induction on the construction of E.

+ If $E=\varnothing$ then $L(E)=\varnothing$. Then $\operatorname{Proj}^{-1}(L)=\varnothing$ is a regular \diamond-language on A_{\diamond}^{*}.
+ If $E=\varepsilon$ then $L(E)=\{\varepsilon\}$. Therefore, $\operatorname{Proj}^{-1}(L)=\{e,(i, \varepsilon, j): i, j \in B\}$ is a finite set; this implies that L is a regular \diamond-language on A_{\diamond}^{*}.
+ Now, we suppose E_{1} and E_{2} are the regular expressions on A^{*} and $\operatorname{Proj}^{-1}\left(L\left(E_{1}\right)\right)$ and $\operatorname{Proj}^{-1}\left(L\left(E_{2}\right)\right)$ are the regular \diamond-languages on A_{\diamond}^{*} already. Then, from the definition of the projection function Proj^{-1}, we easily get:

$$
\begin{aligned}
\operatorname{Proj}^{-1}\left(L\left(E_{1}\right) \cup L\left(E_{2}\right)\right) & =\operatorname{Proj}^{-1}\left(L\left(E_{1}\right)\right) \cup \operatorname{Proj}^{-1}\left(L\left(E_{2}\right)\right) \\
\operatorname{Proj}^{-1}\left(L\left(E_{1}\right) \cdot L\left(E_{2}\right)\right) & =\operatorname{Proj}^{-1}\left(L\left(E_{1}\right)\right) \cdot \operatorname{Proj}^{-1}\left(L\left(E_{2}\right)\right) \\
\operatorname{Proj}^{-1}\left(L\left(E_{1}\right)^{*}\right) & =\operatorname{Proj}^{-1}\left(L\left(E_{1}\right)\right)^{*}
\end{aligned}
$$

Hence, the language $\operatorname{Proj}^{-1}(L)$ is a regular \diamond-language on A_{\diamond}^{*}.
For the second statement, we consider the following example: let $A=\{a\}$ be a singleton alphabet and let $L_{1} \subsetneq A^{*}$ be a non-recursive language on A^{*} (according to classical results, there exists such an L_{1}). Therefore, it does not have any decision algorithm for the membership problem of L_{1}. We define

$$
L=\left\{(1, w, 1) \mid w \in L_{1}\right\} \cup\left\{(0, w, 0) \mid w \notin L_{1}\right\}
$$

It is easily seen that L is also non-recursive, that means the membership problem for L is also not decidable, but the image $\operatorname{Proj}(L)$ is exactly A^{*}, the regular one.
Lemma 3.1. Let \mathscr{A}_{\diamond} be a finite \diamond-automaton and x be $a \diamond$-word of A_{\diamond}^{+}admitting two different factorizations $x=x_{1} \cdot x_{2} \ldots x_{n}=x_{1}^{\prime} \cdot x_{2}^{\prime} \ldots x_{m}^{\prime}$ where $n, m \geq 1, x_{i}, x_{j}^{\prime} \in A_{\diamond}^{*}$, $i=1, \ldots, n, j=1, \ldots, m$. If the sequence $x_{1}, x_{2}, \ldots, x_{n}$ is recognized by \mathcal{A}_{Δ}, then the sequence $x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{m}^{\prime}$ is also recognized by \mathcal{A}_{\diamond}.
Lemma 3.2. Let \mathcal{A}_{\diamond} be a finite \diamond-automaton and $x, y, z \in A_{\diamond,}^{*} z=x . y \neq \theta$ with some factorizations $x=x_{1} \cdot x_{2} \ldots x_{n}, y=y_{1} \cdot y_{2} \ldots y_{m}, z=z_{1} \cdot z_{2} \ldots z_{k} \in A_{\diamond}^{+}$where $n, m, k \geq 1, x_{i}, y_{j}, z_{l} \in A_{\diamond}^{*}, i=1, \ldots, n, j=1, \ldots, m, l=1, \ldots, k$. If the sequence $x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{m}$ are recognized by $\mathscr{A}_{>}>$then the sequence $z_{1}, z_{2}, \ldots, z_{k}$ is also recognized by \mathscr{A}_{\diamond}.

Form Lemma 3.1 and Lemma 3.2, we have following result.
Proposition 3.3. Let $L \subseteq A_{\diamond}^{*}$. Then, L is \diamond-recognizable if and only if there exists a \diamond-morphism $\varphi: A_{\diamond}^{*} \rightarrow M, M$ is finite, such that L is saturated by φ.

From the propositions above, we have
Corollary 3.2. Let $L \subseteq A_{\diamond}^{*}$. The following conditions are equivalent.
(i) L is \diamond-recognizable.
(ii) L is saturated by a finite monoid.
(iii) L is regular \diamond-language.
4. Conversion of Nondeterministic Finite Automata (NFA) to Deterministic Finite Automata (DFA). A popular issue when studying on the theory of formal language and automata is to check whether a string $S \in A^{*}$ is recognized by a finite automaton or not. Many different algorithms of checking have been presented. Next, we are presenting those algorithms again and propose a new algorithm in the approach of \diamond-language to considerably reduce complexity of checking algorithm.

Problem: Let language $L=\left\{S_{1}, S_{2}, \ldots, S_{N}\right\}, S_{i} \in A^{*}$ is a string with the size $\leq l$ characters and finite automaton $\mathcal{A}=(A, Q, \delta, I, T)$ on the alphabet A with m elements, the set of states Q consists of k states. Find out strings $S_{i} \in L$ so that $S_{i} \in \mathcal{L}(\mathcal{A})$.
Algorithm 1. With finite automaton \mathcal{A}, check whether all strings $S_{i} \in L$ are recognized by automaton \mathfrak{A} ? Then, this algorithm has complexity of $O\left(l . m . k^{k} . N\right)$.
Algorithm 2. (Deterministicitization).
Step 1. Change the nondeterministic finite automaton \mathcal{A} into the deterministic finite automaton \mathfrak{A}^{\prime}. This step has complexity of $\geq O\left(2^{k}\right)$.

Step 2. Use the deterministic finite automaton \mathscr{A}^{\prime} to solve the problem: Find out strings $S_{i} \in L$ so that $S_{i} \in \boldsymbol{L}\left(\mathfrak{R}^{\prime}\right)$. This step has complexity of $O(l . N)$.

Therefore, this algorithm has approximate complexity of $\geq O\left(2^{k}+l . N\right)$.

```
Algorithm 3. (Breadth First Search)
Check the string \(S_{i}=a_{1} a_{2} \ldots a_{l}, a_{j} \in A\), on the finite automation.
1. \(N_{0}=I\)
2. For \(j=1\) to \(l\) do
    \(\left\{\quad / /\right.\) Known \(N_{j-1}\), calculate \(N_{j}\)
        \(N_{j}=\varnothing\)
        For each \(q\) in \(N_{j-1}\) do
            Find a neighbor \(q^{\prime}\) of \(q\) with the label \(a_{j}\) such that \(\left(q, a_{j}, q^{\prime}\right) \in E(A)\) then
                        Add \(q^{\prime}\) in \(N_{j}\).
            \}
```

It is realized that N_{j-1} has k states, q has m neighbors and each neighbor has k accessible states. Therefore, checking a string S_{i} has the approximate complexity of $O\left(l . m . k^{2}\right)$. Therefore, this algorithm has complexity of $O\left(l . m . k^{2} \cdot N\right)$.

In this part, we are going to present an extended form of the finite automaton \mathcal{A} and if without confusion, we call it finite \diamond-automaton \mathscr{A}_{\diamond}, the set of bounded B is not only $\{0,1\}$, but also extended to $B=\{0,1,2, \ldots, l\} \subseteq \mathbb{N}$. Next, we use finite \diamond-automaton \mathcal{A}_{\diamond} to solve the problem of checking whether the strings are recognized by the finite automaton \mathcal{A} or not.

Let \mathcal{A} be a finite automaton and l be the length of the longest string recognized by the finite automaton \mathcal{A}. Then, finite \diamond-automaton \mathcal{A}_{\diamond} extended from the finite automaton \mathcal{A} by a 5 -tuple $\mathcal{A}_{\diamond}=\left(A_{\diamond}, Q_{\diamond}, \delta_{\diamond}, I_{\diamond}, T_{\diamond}\right)$
$-A_{\diamond}=\{(i, a, i+1) \mid a \in A, i=0, \ldots, l-1\}$ is the alphabet of \diamond-automaton \mathscr{A}_{\diamond}.
$-Q_{\diamond}=\{(0, q, i) \mid q \in Q, i=0, \ldots, l\}$ is the finite nonempty set of the states.
$-I_{\diamond}=\{(0, q, 0) \mid q \in I\}$ is the set of initial states.
$-T_{\diamond}=\{(0, q, i) \mid q \in T, i=0, \ldots, l\}$ is the set of final states.
Let a word $w=a_{1} \ldots a_{l} \in A^{*}$. Then, the word w is extended into $w_{\diamond}=\left(0, a_{1}, 1\right) \ldots(l-$ $\left.1, a_{l}, l\right)$ and we denote $\boldsymbol{L}\left(\mathcal{A}_{\diamond}\right)$ as a set of \diamond-word recognized by \diamond-automaton \mathcal{A}_{\diamond}, we have: $\boldsymbol{L}\left(\mathcal{A}_{\diamond}\right)=\left\{w \in A^{*} \mid \exists(0, q, 0) \in I_{\diamond}\right.$ such as $\left.\delta_{\diamond}\left(\left(0, q_{0}, 0\right), w_{\diamond}\right) \cap T_{\diamond} \neq \varnothing\right\}$.

With the above definition of \diamond-automata, we have a new mathematic overview of sets of states $V_{i}=\{(0, q, i) \mid q \in Q, i \in B\}$, sets of edges $E_{i}=\left\{\left((0, q, i-1),(i-1, a, i),\left(0, q^{\prime}, i\right)\right)\right\}$ and set of languages $S=\left\{\left(0, a_{1}, 1\right) \ldots\left(l-1, a_{l}, l\right) \mid l \in B, a_{i} \in A, i=1, \ldots, l\right\}$ recognized by the finite automaton \mathcal{A} according to the length of language. In the data structure view, for example: the set of edges $E_{i}=\left\{\left((0, q, i-1),(i-1, a, i),\left(0, q^{\prime}, i\right)\right)\right\}$ is represented as $E[i][q, a]=q^{\prime}$ where i is index of the array or the register (It will be described in detail in the next section).

The following procedure is to build layers of the set of states V_{0}, \ldots, V_{l} and edges E_{1}, \ldots, E_{l} corresponding to the length of language recognized by the finite automaton \mathcal{A}.

```
Procedure 1. To build layers \(V_{i}\) and \(E_{i}\)
1. \(V_{0}=I_{\diamond}, E_{i}=\varnothing\)
2. Repeat: Known \(V_{i-1}\) and calculate \(V_{i}, E_{i}(\) for \(i=1, \ldots, l)\)
3. \(\quad V_{i}=\varnothing, E_{i}=\varnothing\)
4. \(\quad\) For each \((0, q, i-1) \in V_{i-1}\)
5. For each \(a \in A\) and \(q^{\prime} \in Q\)
6. If \(\left(q, a, q^{\prime}\right) \in E(A)\) then \(A d d\left(0, q^{\prime}, i\right)\) to \(V_{i}\). That is \(V_{i}=\left\{\left(0, q^{\prime}, i\right)\right.\)
                                    \(\left.\in Q_{\diamond} \mid \exists\right\}\) path has length \(i\) from \(\left.q_{0} \in I \rightsquigarrow q^{\prime} \in \operatorname{Proj}\left(V_{i}\right)\right\}\)
                                    \(E_{i}=E_{i} \cup\left\{\left((0, q, i-1),(i-1, a, i),\left(0, q^{\prime}, i\right)\right)\right\}\)
8. Stop: \(\left(V_{i}=V_{k<i}\right)\) or \(\left(V_{i}=\varnothing\right)\)
```

Procedure 1 stops if $\left(V_{i}=V_{k<i}\right)$ or $\left(V_{i}=\varnothing\right)$. To mark these two cases, we use the variable $L A P=(i, k)$ in the case $V_{i}=V_{k<i}$; otherwise, $L A P=(i, i)$.

To reduce complexity of Procedure 1 , in the initial setup of the finite automaton \mathcal{A}, corresponding to each edge $\left(q, a, q^{\prime}\right)$, we add an array variable $\operatorname{Trans}\left(q, a, q^{\prime}\right) \in\{T R U E$, $F A L S E\}$ to mark whether edges change successfully.

```
Procedure 2. Put in and mark successfully transition edges.
1. For \(q=1\) to \(k\) do \(\quad / / k\) is the number of states.
        For \(a=1\) to \(m\) do \(/ / m\) is the number of characters in the alphabet \(A\).
            For \(q=1\) to \(k\) do
4. \(\quad \operatorname{Trans}\left(q, a, q^{\prime}\right)=F A L S E\)
5. For \(i=1\) to CountArc do // CountArc is the number of edges.
6. \(\left\{\quad\right.\) Put in values \(q, a, q^{\prime}\). // Put in Edge ( \(q, a, q^{\prime}\) ).
7. \(\left.E[i][q, a]=q^{\prime}, \operatorname{Trans}\left(q, a, q^{\prime}\right)=\operatorname{TRUE}\right\}\)
8. For each \(q\) in \(T\) do \(\operatorname{Fin}(q)=\) TRUE // Mark final states.
```

Procedure 2 has the approximate complexity size of $O\left(m \cdot k^{2}\right)$. Then, the line 6 of Procedure 1 can be replaced by:

```
If Trans (q,a,q') = TRUE then Add (0, q},i) to Vi
```

Therefore, each set V_{i-1} has the size $k_{1} \leq k$. Then, if we have l sets $\left\{V_{1}, V_{2}, \ldots, V_{l}\right\}$ then Procedure 1 has approximate complexity of $O\left(m \cdot k^{2}+l . m \cdot k_{1} \cdot k\right) \leq O\left(l . m \cdot k^{2}\right)$.
Example 4.1. Let $\mathcal{A}=(A, Q, \delta, I, T)$ be a finite automaton where with $A=\{a, b\}$, $Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}, I=\left\{q_{0}\right\}, T=\left\{q_{3}\right\}$ and the edges $\left(q_{0}, a, q_{1}\right),\left(q_{0}, b, q_{2}\right),\left(q_{1}, b, q_{3}\right)$, $\left(q_{2}, a, q_{1}\right),\left(q_{2}, b, q_{3}\right)$.

Easy to see that, \mathcal{A} recognizes the language $\left\{(a b+c b+a) c^{*} a c,(a+c) d\right\}$ (cf. Figure 1). Then, the layers V_{i} and E_{i} of \diamond-automaton are defined as follows: (cf. Figure 2)

$$
\begin{aligned}
& V_{0}=\left\{\left(0, q_{0}, 0\right)\right\}, V_{1}=\left\{\left(0, q_{1}, 1\right),\left(0, q_{2}, 1\right)\right\} \\
& E_{1}=\left\{\left(\left(0, q_{0}, 0\right),(0, a, 1),\left(0, q_{1}, 1\right)\right),\left(\left(0, q_{0}, 0\right),(0, b, 1),\left(0, q_{2}, 1\right)\right)\right\} \\
& V_{2}=\left\{\left(0, q_{3}, 2\right),\left(0, q_{1}, 2\right)\right\} \\
& E_{2}=\left\{\left(\left(0, q_{1}, 1\right),(1, b, 2),\left(0, q_{3}, 2\right)\right),\left(\left(0, q_{2}, 1\right),(1, a, 2),\left(0, q_{1}, 2\right)\right),\right. \\
&\left.\left(\left(0, q_{2}, 1\right),(1, b, 2),\left(0, q_{3}, 2\right)\right)\right\} \\
& V_{3}=\left\{\left(0, q_{3}, 3\right)\right\}, E_{3}=\left\{\left(\left(0, q_{1}, 2\right),(2, b, 3),\left(0, q_{3}, 3\right)\right)\right\} \\
& V_{4}=\varnothing, L A P=(4,4)
\end{aligned}
$$

Example 4.2. Let $\mathcal{A}=(A, Q, \delta, I, T)$ be a finite automaton where $A=\{a, b, c, d\}, Q=$ $\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right\}, I=\left\{q_{0}, q_{2}\right\}, F=\left\{q_{4}\right\}$ and the edges $\left(q_{0}, a, q_{1}\right)$, $\left(q_{0}, a, q_{2}\right),\left(q_{0}, c, q_{1}\right)$, $\left(q_{1}, b, q_{2}\right),\left(q_{1}, d, q_{4}\right),\left(q_{2}, a, q_{3}\right),\left(q_{2}, c, q_{2}\right),\left(q_{3}, c, q_{4}\right)$.

Easy to see that, \mathcal{A} recognizes the language $\{a b, b a b, b b\}$ (cf. Figure 3). The layers V_{i} and transition states $E\left(\mathcal{A}_{\diamond}\right)$ of \diamond-automaton \mathcal{A}_{\diamond} are defined as follows: (cf. Figure 4)

$$
V_{0}=\left\{\left(0, q_{0}, 0\right),\left(0, q_{2}, 0\right)\right\}, V_{1}=\left\{\left(0, q_{1}, 1\right),\left(0, q_{2}, 1\right),\left(0, q_{3}, 1\right)\right\}
$$

$$
\begin{aligned}
& E_{1}=\left\{\left(\left(0, q_{0}, 0\right),(0, a, 1),\left(0, q_{1}, 1\right)\right),\left(\left(0, q_{0}, 0\right),(0, c, 1),\left(0, q_{1}, 1\right)\right),\right. \\
&\left(\left(0, q_{0}, 0\right),(0, a, 1),\left(0, q_{2}, 1\right)\right),\left(\left(0, q_{2}, 0\right),(0, c, 1),\left(0, q_{2}, 1\right)\right), \\
&\left.\left(\left(0, q_{2}, 0\right),(0, a, 1),\left(0, q_{3}, 1\right)\right)\right\} \\
& V_{2}=\{ \left.\left(0, q_{2}, 2\right),\left(0, q_{4}, 2\right),\left(0, q_{3}, 2\right)\right\} \\
& E_{2}=\left\{\left(\left(0, q_{1}, 1\right),(1, b, 2),\left(0, q_{2}, 2\right)\right),\left(\left(0, q_{1}, 1\right),(1, d, 2),\left(0, q_{4}, 2\right)\right),\right. \\
&\left(\left(0, q_{2}, 1\right),(1, c, 2),\left(0, q_{2}, 2\right)\right),\left(\left(0, q_{2}, 1\right),(1, a, 2),\left(0, q_{3}, 2\right)\right), \\
&\left.\left(\left(0, q_{3}, 1\right),(1, c, 2),\left(0, q_{4}, 2\right)\right)\right\} \\
& V_{3}= V_{2}, \text { LAP }=(3,2)
\end{aligned}
$$

Similar to Procedure 1, we can design an array to mark the edges $((0, q, j-1),(j-$ $\left.\left.1, a_{j}, j\right),\left(0, q^{\prime}, j\right)\right) \in E_{t}$. Then, the set U_{j-1} has s_{1} states $\left(s_{1} \leq k\right)$ and V_{t} has s_{2} states

Figure 1. The finite automaton \mathcal{A} recognizes $\{a b, b a b, b b\}$

Figure 2. The finite \diamond-automaton \mathscr{A}_{\diamond} extended from the finite automaton \mathcal{A} in Figure 1

Figure 3. The automaton \mathcal{A} recognizes $\left\{(a b \cup c b \cup c) c^{*} a c,(a \cup c) d\right\}$

Figure 4. The \diamond-automaton \mathcal{A}_{\diamond} extended from the automaton \mathcal{A} in Figure 3

```
Algorithm 4. Approach according to \(\diamond\)-automata
Step 1. Build sets of states \(V_{i}\) and the edges \(E_{i}\) recognizing a language with the
        length \(i\). This step has the complexity size of \(O\left(l . m . k^{2}\right)\).
Step 2. Check the string \(S_{i}=a_{1} a_{2} \ldots a_{l}, a_{j} \in A\).
    To check the string \(S_{i}\), we check the string \(S_{i}^{\prime}=\left(0, a_{1}, 1\right) .\left(1, a_{2}, 2\right) \ldots\left(l-1, a_{l}, l\right)\)
    on finite \(\diamond\)-automaton \(A_{\diamond}\).
    \((n, s)=L A P\)
    If \((n<l)\) and \((n=s)\) then \(\{K Q=\) False and Exit \(\}\)
    \(U_{0}=I_{\diamond}, t=0\)
    Repeat: Consider the labels \(a_{j}\) in the string \(S_{i}\)
    \(U_{j}=\varnothing, t=t+1\)
    For each pair of states \((0, q, j-1) \in U_{j-1}\) and \(\left(0, q^{\prime}, j\right) \in V_{t}\)
                        If \(\left((0, q, j-1),\left(j-1, a_{j}, j\right),\left(0, q^{\prime}, j\right)\right) \in E_{t}\) then Add \(\left(0, q^{\prime}, j\right)\) to \(U_{j}\).
            If \((t=n)\) then \(t=s \quad / /\) Repeat if \(V_{t}=V_{s}\)
        Stop (1) If \((j=l)\) and \(\left(U_{j} \cap T_{\diamond} \neq \varnothing\right)\) then \(\quad\{K Q=\) True and Exit \(\}\).
    10. (2) If \((j=l)\) or \(\left(U_{j}=\varnothing\right)\) then \(\quad\{K Q=\) False and Exit \(\}\).
```

$\left(s_{2} \leq k\right)$. Therefore, Step 2 has the complexity size of $O\left(l . s_{1} \cdot s_{2}\right)$. Checking the strings $\left\{S_{1}, S_{2}, \ldots, S_{N}\right\}$ on the finite \diamond-automaton \mathcal{A}_{\diamond} has the complexity size of $O\left(l . s_{1} \cdot s_{2} \cdot N\right)$. Therefore, Algorithm 4 has the approximate complexity size of $O\left(l . m \cdot k^{2}+l . s_{1} \cdot s_{2} \cdot N\right) \leq$ $O\left(l . k^{2} .(m+N)\right)$.

Example 4.3. Using the finite automaton \mathcal{A} in Example 4.2, check whether following strings $S \in A^{*}$ are recognized by the automat \mathcal{A} or not.
a) With $S=a b c a c \in A^{*}$. Implement steps of Algorithm 4:
$l=|S|=5$ and $S_{\diamond}=(0, a, 1) \cdot(1, b, 2) \cdot(2, c, 3) \cdot(3, a, 4) .(4, c, 5)$
$U_{0}=I_{\diamond}=\left\{\left(0, q_{0}, 0\right),\left(0, q_{2}, 0\right)\right\}, U_{1}=\left\{\left(0, q_{1}, 1\right),\left(0, q_{2}, 1\right),\left(0, q_{3}, 1\right)\right\}$
$U_{2}=\left\{\left(0, q_{2}, 2\right)\right\} ; U_{3}=\left\{\left(0, q_{2}, 3\right)\right\} ; U_{4}=\left\{\left(0, q_{3}, 4\right)\right\} ; U_{5}=\left\{\left(0, q_{4}, 5\right)\right\}$
It is realized that, $\left(0, q_{4}, 5\right) \in T_{\diamond}$. Therefore, the string $S=$ abcac is recognized by the finite automaton \mathcal{A}.
b) With $S=a c b c \in A^{*}$. Implement steps of Algorithm 4:
$l=|S|=5$ and $S_{\diamond}=(0, a, 1) \cdot(1, b, 2) \cdot(2, d, 3) \cdot(3, c, 4)$
$U_{0}=I_{\diamond}=\left\{\left(0, q_{0}, 0\right),\left(0, q_{2}, 0\right)\right\}, U_{1}=\left\{\left(0, q_{1}, 1\right),\left(0, q_{2}, 1\right),\left(0, q_{3}, 1\right)\right\}$
$U_{2}=\left\{\left(0, q_{2}, 2\right)\right\}, U_{3}=\varnothing$.
Therefore, the string $S=$ acbc is not recognized by the finite automaton \mathcal{A}.

With the above finite \diamond-automaton model approach, we have a new view of the layers based on the length of the recognized word. If we use function $\operatorname{Proj}()$ defined in Section 1, we can present Algorithm 4 in array structure form: sets of states V_{i}, U_{j} are corresponding to the 2 -dimensional arrays $V[i][p]$ and $U[j][q]$, the edge E_{i} is a 3-dimensional array $E[i][q, a]$, we have

```
Algorithm 5. Set up in the array structure.
Step 1. Build sets \(V[i][q]\) and the edges \(E[i][q, a]\).
Step 2. Check the string \(S_{i}=a_{1} a_{2} \ldots a_{l}, a_{j} \in A\).
    1. \((n, s)=L A P\)
    2. If \((n<l)\) and \((n=s)\) then \(\{K Q=\) False and Exit \(\}\)
    3. For \(k=1\) to \(|I|\) do \(U[0][k]=I[k]\),
    4. Count_U[0] \(=|I|, j=0, t=0\)
    5. Do While \((j<l)\)
        \{ // Known \(U[j-1]\) and the label a[j]. Calculate \(U[j]\)
        Count_U[j] \(=0, j=j+1, t=t+1\)
        7. For \(p=1\) to Count \(U[j-1]\) do
    8. For \(q=1\) to Count_V \(V[t]\) do
    9. If \(\operatorname{Trans}(U[j-1][p], a[j], V[t][q])=T R U E\) then
    10. \(\quad\{\) Count_ \(U[j]=\) Count_ \(U[j]+1, U[j][\) Count_ \(U[j]]=q\}\)
    11. If \((t=n)\) then \(t=s \quad / /\) Repeat if \(V[t]=V[s]\).
    12. If \((j=l)\) and \((U[j] \cap T \neq \varnothing)\) then \(\{K Q=\) True and Exit \(\}\).
    13. If \((j=l)\) or (Count_ \(U[j]=0)\) then \(\{K Q=\) False and Exit \(\}\).
```

5. Conclusion. In this paper, new types of automata are introduced. Our result shows that these automata can be considered as extension forms of traditional automata. Hence, a new perspective on mathematical model of automaton is given and a new checking algorithm is proposed, greatly reducing the complexity of the checking algorithm. Results obtained to \diamond-automaton enrich theory of languages and can provide us some applications such as establishing new trapdoors in the area of cryptography.

REFERENCES

[1] S. Eilenberg, Automata, Languages and Machines, Volume B, Academic Press, New York, 1976.
[2] D. J. E. Hopcroft and J. D. Ullman, Formal Languages and Their Relation to Automata, AddisonWesley Publishing Company, 1969.
[3] H. N. Vinh and P. T. Huy, Codes of bounded words, Proc. of the 3rd International Conference on Computer and Electrical Engineering (ICCEE 2010), Chengdu, China, 2010.
[4] H. N. Vinh and N. D. Han, A novel method based on the post correspondance problem for designing cryptosystems, Journal of Science 8 Technology - Technical Universities, no.121, pp.58-63, 2017.
[5] T. Jastrzab, On parallel induction of nondeterministic finite automata, Procedia Computer Science, vol.80, pp.257-268, 2016.
[6] N. D. Han, H. N. Vinh, D. Q. Thang and P. T. Huy, Quadratic algorithms for testing of codes and \diamond-codes, Fundamenta Informaticae, vol.130, pp.1-15, 2014.
[7] T. Marschall, Construction of minimal deterministic finite automata from biological motifs, Theoretical Computer Science, vol.412, pp.922-930, 2011.

[^0]: DOI: 10.24507/icicel.12.10.981

