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Abstract. In this paper, concepts of bounded words on an alphabet A, ♢-languages
and monoid ♢-morphisms are introduced. Some basic results for recognizable languages
and regular languages of bounded words on A are obtained. These allow defining an
extension of the automaton on the set of bounded words. Hence, a new perspective of
mathematical model of sets of states, edges, languages recognized by the finite automaton
according to the length of languages is given and a new checking algorithm is proposed,
greatly reducing the complexity of the checking algorithm.
Keywords: Bounded word, Monoid morphism, ♢-automata, ♢-recognizable, Algorithm

1. Introduction. The theory of formal languages, finite automata and complexity are
modern branches in computer theory and their mathematical models play very important
roles. There are a lot of works considering the relationship between these mathematical
models. For example, a popular issue in studying the theory of formal languages and
automata is checking whether the strings are recognized by a finite automaton. Many
different checking algorithms have been proposed.

In this paper, we introduce the notions of bounded words on an alphabet A, ♢-languages
and monoid ♢-morphisms (see also [3]). In addition, we give the new definitions of the
regular ♢-expressions, regular ♢-languages and finite ♢-automata. Hence, some basic
results for recognizability of the ♢-automata, (Proposition 3.1, Proposition 3.3), the rela-
tionship between regular language and regular ♢-languages (Proposition 3.2), in special,
the relationship between ♢-automata, ♢-recognizable and regular ♢-languages are ob-
tained. In Section 3, the algorithms of checking if a language L can be recognized by
an automaton and their complexity are considered. Then, a new algorithm (Algorithm
4), with the ♢-automaton approach, reducing the complexity compared with previous
algorithms is proposed.

2. Languages of Bounded Words. At first, we recall some notions and notations; for
more details, we refer to [4,6]. Let A be a finite alphabet and the set B = {0, 1}. The
sets of bounded words (♢-words) on A are A♢ = {(i, a, j)|a ∈ A or a = ε, i, j ∈ B} and
A∗

♢ = {(i, w, j)|w ∈ A∗, i, j ∈ B} ∪ {θ, e}. Then, each element (i, w, j), w ∈ A∗, is called
a ♢-word (or a bounded word with borders i, j) extended from w in which e, θ are two
new elements as the unit, the zero of the monoid A∗

♢ of all ♢-words respectively. It is
easily seen that, A∗

♢ is a monoid by a product defined as follows: for any x1 = (i1, w1, j1),
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x2 = (i2, w2, j2) in A∗
♢, if j1 = i2 then x1.x2 = (i1, w1w2, j2), else x1.x2 = θ and ∀x ∈ A∗

♢,
x.θ = θ.x = θ, x.e = e.x = x.

We call A∗
♢ the ♢-monoid defined by A. A set L ⊆ A∗

♢ is called an extended language
(♢-language) on A. Whenever none of mistakes are made, we also use notation |x| as
the length of x. In particular we make a convention: |θ| = −∞, |e| = 0 and |x| = 0
if x ∈ {(i, ε, j)|i, j ∈ B}. For X, Y ⊆ A∗

♢, left and right quotients are defined as
Y −1X = {u ∈ A∗

♢|∃y ∈ Y : y.u ∈ X} and XY−1 = {u ∈ A∗
♢|∃ y ∈ Y : u.y ∈ X}. The

function Proj: A∗
♢ → A∗ ∪ {0} is defined by Proj(e) = ε, Proj(θ) = 0 and Proj(i, w, j) =

w (where 0 /∈ A∗ as the new zero of the monoid A∗ ∪ {0}).
Definition 2.1. Let M be a monoid with the unit 1, the zero 0. Let φ: A∗

♢ → M be a
function. Then, φ is called a monoid ♢-morphism (or ♢-morphism for short) if it satisfies
the following conditions:

(1) x, y ∈ A∗
♢ and x.y ̸= θ then φ(x.y) = φ(x).φ(y)

(2) φ(e) = 1
(3) φ(θ) = 0

Definition 2.2. Let L ⊆ A∗
♢ and M be a monoid. We say that M saturates L if there

exists a ♢-morphism φ: A∗
♢ → M such that L = φ−1(N) for some N ⊆ M . In this case,

we also say that L is saturated by φ.

From Definition 2.2, if N1, N2 ⊆ M , imply that φ−1(N1 ∩ N2) = φ−1(N1) ∩ φ−1(N2),
φ−1(N1 ∪ N2) = φ−1(N1) ∪ φ−1(N2), φ−1(N1\N2) = φ−1(N1)\φ−1(N2). Moreover, if φ
is subjective, we have φ−1

(
N−1

1 N2

)
= φ−1(N1)

−1φ−1(N2), φ−1
(
N1N

−1
2

)
= φ−1(N1)φ

−1

(N2)
−1.

For each L ⊆ A∗
♢, due to S. Eilenberg [1], we can apply a similar way to constructing a

monoid M saturating L. We denote by R(A,M), the set of all ♢-languages saturated by
M on A∗

♢. According to [4], R(A,M) is closed under the boolean operations. Further, if
φ is an epimorphism then R(A,M) is closed under the left quotients and right quotients.

3. Extended Recognizable Languages. In this section, we propose the notions of
regular ♢-expression and regular ♢-language by following definitions.

Definition 3.1. Let A be a finite alphabet. A regular ♢-expression on A∗
♢ is defined

recursively as follows.
(i) ∅, e, θ are regular ♢-expressions.
(ii) ∀a ∈ A or a = ε, ∀i, j ∈ B, (i, a, j) is a regular ♢-expression.
(iii) If E1 and E2 are the regular ♢-expressions, then (E1 + E2), E1.E2 and E∗

1 are the
regular ♢-expressions.

(iv) There is not any regular ♢-expressions except the regular ♢-expressions defined by
(i), (ii) and (iii).

Then, we define regular ♢-languages.

Definition 3.2. Let A be a finite alphabet. A regular ♢-languages determined by the
regular ♢-expression E on A∗

♢, denoted by L(E), is defined recursively as follows.
(i) E = ∅ then L(E) = ∅.
(ii) E = e then L(E) = {e}.
(iii) E = θ then L(E) = {θ}.
(iv) E = (i, ε, j) then L(E) = {(i, ε, j)}, ∀i, j ∈ B.
(v) ∀(i, a, j) ∈ A♢, E = (i, a, j) then L(E) = {(i, a, j)}.
(vi) If E1 and E2 are the regular ♢-expressions and L(E1) and L(E2) have been defined,

E = (E1 + E2) then L(E) = L(E1) ∪ L(E2), E = E1.E2 then L(E) = L(E1).L(E2) and
E = E∗

1 then L(E) = L(E1)
∗.

(vii) Only the ♢-languages which are defined by (i), (ii), (iii), (iv), (v) and (vi) are
regular ♢-languages.
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Combining with a finite automaton A = (A, Q, δ, I, T ), we define a special form of finite
automata that accepts a set of ♢-words on A∗

♢ as follows.

Definition 3.3. Let A = (A,Q, δ, I, T ) be a nondeterministic finite automaton, we define
a finite extended automaton (for brevity, ♢-automaton) A♢ by a 5-tuple A♢ = (A♢, Q♢, δ♢,
I♢, T♢) satisfying:

– A♢ = {(i, a, j)|a ∈ A, i, j ∈ B} ∪ {e, θ} is considered as the alphabet of A♢.
– Q♢ = {(i, q, j)|q ∈ Q, i, j ∈ B} ∪ {qθ} is the finite nonempty set of the states, where

qθ is a new sink state.
– I♢ = {(i, q, j)|q ∈ I, i, j ∈ B} is the set of initial states.
– T♢ = {(i, q, j)|q ∈ T, i, j ∈ B} is the set of final states.
– Denote by P (Q♢) the set of all subsets of Q♢, then the transition function δ♢: Q♢ ×

A∗
♢ → P (Q♢) is defined as follows: for any (i, q, j) in Q♢,

δ♢((i, q, j), e) = (i, q, j) where e ∈ A∗
♢.

δ♢((i, q, j), θ) = qθ where θ ∈ A∗
♢.

δ♢((i, q, j), (j′, a, k)) ∋ (i, q′, k) ⇔ ∀a ∈ A: δ(q, a) ∋ q′ and j = j′, otherwise
if j ̸= j′ then δ♢((i, q, j), (l, a, k)) = qθ.

For simplicity, with s, s′ ∈ Q, we write s.x instead of δ♢(s, x), x = e, θ or x = (l, a, k),
a ∈ A, and it can be extended inductively on length to any ♢-word x ∈ A∗

♢: s.x =
Ys′∈s.u,x=u.ys

′.y. A sequence x1, x2, . . ., xn of ♢-words in A∗
♢ is said to be accepted by A♢

if and only if there exists q♢ ∈ T♢, such that q♢ ∈ (((q0.x1).x2) . . .).xn and in that case
♢-word x = x = x1.x2 . . . xn is said to be accepted by A♢. Denote by LLL(A♢) the set of all
♢-words recognized by A♢, that is LLL(A♢) = {x ∈ A∗

♢|∃q0 ∈ I♢ such that q0.x ∩ T♢ ̸= ∅}.
We call a ♢-language L to be accepted by A♢ if L = LLL(A♢).

For brevity, from now on, we write finite ♢-automaton (automaton) instead of nonde-
terministic finite ♢-automaton (automaton).

Definition 3.4. A set L ⊆ A∗
♢ is called an extended recognizable language (or ♢-recogni-

zable) if L = LLL(A♢) for some finite ♢-automaton A♢.

We call a language L ⊆ A∗
♢ a ♢-recursive language if the membership problem for L is

solvable. The following results are fundamental for the case of finite ♢-automata which
can be verified directly by definition.
Fact 1. If L ⊆ A∗

♢ is ♢-recognizable then L is ♢-recursive.
Let L ⊆ A∗, we build an extension operator of language ♢: L′ = {(i, w, j) ∈ A∗

♢|w ∈
L, i, j ∈ B} and L♢ = L′ if ε /∈ L; L♢ = L′ ∪ {e} if ε ∈ L. A non-trivial relationship
between ♢-recognizable languages and recognizable languages is showed by Fact 2 below.
Fact 2. Let L ⊆ A∗. If L is recognizable by a finite automaton A then L♢ is recognizable
by a finite ♢-automaton A♢, where A♢ is a ♢-automaton expanded form A.

The properties above and the classical results confirm the equivalent of deterministic
and nondeterministic finite automata. So, we have following corollary.

Corollary 3.1. Let L ⊆ A∗
♢. If L is recognizable by a finite ♢-automaton then it is also

recognizable by a deterministic finite ♢-automaton.

Next, we will show some fundamental results for ♢-automata, which can be proved
classically similar to the methods used in [2,5,7]. Some results are well-known so their
proofs are ignored in this paper.

Proposition 3.1. Let L ⊆ A∗
♢. Then L is ♢-recognizable if and only if L is regular

♢-language.

A non-trivial relationship between regular ♢-languages and regular languages is shown
by the following result.
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Proposition 3.2. Given a regular language L ⊆ A∗. Then Proj −1(L) is a regular ♢-
language on A∗

♢. There exists L which is not a regular ♢-language on A∗
♢ but Proj(L) is

a regular language on A∗.

Proof: By definition and assumption, L = L(E) for some regular ♢-expression E. We
will prove by induction on the construction of E.

+ If E = ∅ then L(E) = ∅. Then Proj −1(L) = ∅ is a regular ♢-language on A∗
♢.

+ If E = ε then L(E) = {ε}. Therefore, Proj −1(L) = {e, (i, ε, j) : i, j ∈ B} is a finite
set; this implies that L is a regular ♢-language on A∗

♢.
+ Now, we suppose E1 and E2 are the regular expressions on A∗ and Proj −1(L(E1))

and Proj −1(L(E2)) are the regular ♢-languages on A∗
♢ already. Then, from the definition

of the projection function Proj −1, we easily get:

Proj −1(L(E1) ∪ L(E2)) = Proj −1(L(E1)) ∪ Proj −1(L(E2))

Proj −1(L(E1).L(E2)) = Proj −1(L(E1)).Proj −1(L(E2))

Proj −1(L(E1)
∗) = Proj −1(L(E1))

∗

Hence, the language Proj −1(L) is a regular ♢-language on A∗
♢.

For the second statement, we consider the following example: let A = {a} be a singleton
alphabet and let L1 ( A∗ be a non-recursive language on A∗ (according to classical
results, there exists such an L1). Therefore, it does not have any decision algorithm for
the membership problem of L1. We define

L = {(1, w, 1)|w ∈ L1} ∪ {(0, w, 0)|w /∈ L1}
It is easily seen that L is also non-recursive, that means the membership problem for

L is also not decidable, but the image Proj(L) is exactly A∗, the regular one. �
Lemma 3.1. Let A♢ be a finite ♢-automaton and x be a ♢-word of A+

♢ admitting two
different factorizations x = x1.x2 . . . xn = x′

1.x
′
2 . . . x′

m where n, m ≥ 1, xi, x
′
j ∈ A∗

♢,
i = 1, . . . , n, j = 1, . . . ,m. If the sequence x1, x2, . . . , xn is recognized by A♢, then the
sequence x′

1, x′
2, . . . , x

′
m is also recognized by A♢.

Lemma 3.2. Let A♢ be a finite ♢-automaton and x, y, z ∈ A∗
♢, z = x.y ̸= θ with

some factorizations x = x1.x2 . . . xn, y = y1.y2 . . . ym, z = z1.z2 . . . zk ∈ A+
♢ where

n,m, k ≥ 1, xi, yj, zl ∈ A∗
♢, i = 1, . . . , n, j = 1, . . . , m, l = 1, . . . , k. If the sequence

x1, x2, . . . , xn, y1, y2, . . . , ym are recognized by A♢ then the sequence z1, z2, . . . , zk is also
recognized by A♢.

Form Lemma 3.1 and Lemma 3.2, we have following result.

Proposition 3.3. Let L ⊆ A∗
♢. Then, L is ♢-recognizable if and only if there exists a

♢-morphism φ: A∗
♢ → M , M is finite, such that L is saturated by φ.

From the propositions above, we have

Corollary 3.2. Let L ⊆ A∗
♢. The following conditions are equivalent.

(i) L is ♢-recognizable.
(ii) L is saturated by a finite monoid.
(iii) L is regular ♢-language.

4. Conversion of Nondeterministic Finite Automata (NFA) to Deterministic
Finite Automata (DFA). A popular issue when studying on the theory of formal
language and automata is to check whether a string S ∈ A∗ is recognized by a finite
automaton or not. Many different algorithms of checking have been presented. Next, we
are presenting those algorithms again and propose a new algorithm in the approach of
♢-language to considerably reduce complexity of checking algorithm.
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Problem: Let language L = {S1, S2, . . . , SN}, Si ∈ A∗ is a string with the size ≤ l
characters and finite automaton A = (A,Q, δ, I, T ) on the alphabet A with m elements,
the set of states Q consists of k states. Find out strings Si ∈ L so that Si ∈ LLL(A).

Algorithm 1. With finite automaton A, check whether all strings Si ∈ L are recognized
by automaton A? Then, this algorithm has complexity of O(l.m.kk.N).

Algorithm 2. (Deterministicitization).
Step 1. Change the nondeterministic finite automaton A into the deterministic finite

automaton A ′. This step has complexity of ≥ O(2k).
Step 2. Use the deterministic finite automaton A ′ to solve the problem: Find out strings

Si ∈ L so that Si ∈ LLL(A ′). This step has complexity of O(l.N).
Therefore, this algorithm has approximate complexity of ≥ O(2k + l.N).

Algorithm 3. (Breadth First Search)
Check the string Si = a1a2 . . . al, aj ∈ A, on the finite automation.
1. N0 = I
2. For j = 1 to l do

{ //Known Nj−1, calculate Nj

3. Nj = ∅
4. For each q in Nj−1 do
5. Find a neighbor q′ of q with the label aj such that (q, aj, q

′) ∈ E(A) then
6. Add q′ in Nj.

}

It is realized that Nj−1 has k states, q has m neighbors and each neighbor has k
accessible states. Therefore, checking a string Si has the approximate complexity of
O(l.m.k2). Therefore, this algorithm has complexity of O(l.m.k2.N).

In this part, we are going to present an extended form of the finite automaton A and
if without confusion, we call it finite ♢-automaton A♢, the set of bounded B is not only
{0, 1}, but also extended to B = {0, 1, 2, . . . , l} ⊆ N. Next, we use finite ♢-automaton
A♢ to solve the problem of checking whether the strings are recognized by the finite
automaton A or not.

Let A be a finite automaton and l be the length of the longest string recognized by the
finite automaton A. Then, finite ♢-automaton A♢ extended from the finite automaton A

by a 5-tuple A♢ = (A♢, Q♢, δ♢, I♢, T♢)
– A♢ = {(i, a, i + 1)|a ∈ A, i = 0, . . . , l − 1} is the alphabet of ♢-automaton A♢.
– Q♢ = {(0, q, i)|q ∈ Q, i = 0, . . . , l} is the finite nonempty set of the states.
– I♢ = {(0, q, 0)|q ∈ I} is the set of initial states.
– T♢ = {(0, q, i)|q ∈ T, i = 0, . . . , l} is the set of final states.
Let a word w = a1 . . . al ∈ A∗. Then, the word w is extended into w♢ = (0, a1, 1) . . . (l−

1, al, l) and we denote LLL(A♢) as a set of ♢-word recognized by ♢-automaton A♢, we have:
LLL(A♢) = {w ∈ A∗|∃(0, q, 0) ∈ I♢ such as δ♢((0, q0, 0), w♢) ∩ T♢ ̸= ∅}.

With the above definition of ♢-automata, we have a new mathematic overview of sets of
states Vi = {(0, q, i)|q ∈ Q, i ∈ B}, sets of edges Ei = {((0, q, i − 1), (i − 1, a, i), (0, q′, i))}
and set of languages S = {(0, a1, 1). . .(l−1, al, l)|l ∈ B, ai ∈ A, i = 1, . . . , l} recognized by
the finite automaton A according to the length of language. In the data structure view,
for example: the set of edges Ei = {((0, q, i − 1), (i − 1, a, i), (0, q′, i))} is represented as
E[i][q, a] = q′ where i is index of the array or the register (It will be described in detail
in the next section).

The following procedure is to build layers of the set of states V0, . . . , Vl and edges E1,
. . . , El corresponding to the length of language recognized by the finite automaton A.
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Procedure 1. To build layers Vi and Ei

1. V0 = I♢, Ei = ∅
2. Repeat: Known Vi−1 and calculate Vi, Ei (for i = 1, . . . , l)
3. Vi = ∅, Ei = ∅
4. For each (0, q, i − 1) ∈ Vi−1

5. For each a ∈ A and q′ ∈ Q
6. If (q, a, q′) ∈ E(A) then Add (0, q′, i) to Vi. That is Vi = {(0, q′, i)

∈ Q♢|∃} path has length i from q0 ∈ I  q′ ∈ Proj(Vi) }
7. Ei = Ei ∪ {((0, q, i − 1), (i − 1, a, i), (0, q′, i))}
8. Stop: (Vi = Vk<i) or (Vi = ∅)

Procedure 1 stops if (Vi = Vk<i) or (Vi = ∅). To mark these two cases, we use the
variable LAP = (i, k) in the case Vi = Vk<i; otherwise, LAP = (i, i).

To reduce complexity of Procedure 1, in the initial setup of the finite automaton A,
corresponding to each edge (q, a, q′), we add an array variable Trans(q, a, q′) ∈ {TRUE,
FALSE} to mark whether edges change successfully.

Procedure 2. Put in and mark successfully transition edges.
1. For q = 1 to k do // k is the number of states.
2. For a = 1 to m do // m is the number of characters in the alphabet A.
3. For q = 1 to k do
4. Trans(q, a, q′) = FALSE
5. For i = 1 to CountArc do // CountArc is the number of edges.
6. { Put in values q, a, q′. // Put in Edge (q, a, q′).
7. E[i][q, a] = q′, Trans(q, a, q′) = TRUE }
8. For each q in T do Fin(q) = TRUE // Mark final states.

Procedure 2 has the approximate complexity size of O(m.k2). Then, the line 6 of
Procedure 1 can be replaced by:

If Trans(q, a, q′) = TRUE then Add (0, q′, i) to Vi.

Therefore, each set Vi−1 has the size k1 ≤ k. Then, if we have l sets {V1, V2, . . . , Vl}
then Procedure 1 has approximate complexity of O(m.k2 + l.m.k1.k) ≤ O(l.m.k2).

Example 4.1. Let A = (A,Q, δ, I, T ) be a finite automaton where with A = {a, b},
Q = {q0, q1, q2, q3}, I = {q0}, T = {q3} and the edges (q0, a, q1), (q0, b, q2), (q1, b, q3),
(q2, a, q1), (q2, b, q3).

Easy to see that, A recognizes the language {(ab + cb + a)c∗ac, (a + c)d} (cf. Figure 1).
Then, the layers Vi and Ei of ♢-automaton are defined as follows: (cf. Figure 2)

V0 = {(0, q0, 0)}, V1 = {(0, q1, 1), (0, q2, 1)}
E1 = {((0, q0, 0), (0, a, 1), (0, q1, 1)), ((0, q0, 0), (0, b, 1), (0, q2, 1))}
V2 = {(0, q3, 2), (0, q1, 2)}
E2 = {((0, q1, 1), (1, b, 2), (0, q3, 2)), ((0, q2, 1), (1, a, 2), (0, q1, 2)),

((0, q2, 1), (1, b, 2), (0, q3, 2))}
V3 = {(0, q3, 3)}, E3 = {((0, q1, 2), (2, b, 3), (0, q3, 3))}
V4 = ∅, LAP = (4, 4)

Example 4.2. Let A = (A, Q, δ, I, T ) be a finite automaton where A = {a, b, c, d}, Q =
{q0, q1, q2, q3, q4}, I = {q0, q2}, F = {q4} and the edges (q0, a, q1), (q0, a, q2), (q0, c, q1),
(q1, b, q2), (q1, d, q4), (q2, a, q3), (q2, c, q2), (q3, c, q4).

Easy to see that, A recognizes the language {ab, bab, bb} (cf. Figure 3). The layers Vi

and transition states E(A♢) of ♢-automaton A♢ are defined as follows: (cf. Figure 4)

V0 = {(0, q0, 0), (0, q2, 0)}, V1 = {(0, q1, 1), (0, q2, 1), (0, q3, 1)}
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E1 = {((0, q0, 0), (0, a, 1), (0, q1, 1)), ((0, q0, 0), (0, c, 1), (0, q1, 1)),

((0, q0, 0), (0, a, 1), (0, q2, 1)), ((0, q2, 0), (0, c, 1), (0, q2, 1)),

((0, q2, 0), (0, a, 1), (0, q3, 1))}
V2 = {(0, q2, 2), (0, q4, 2), (0, q3, 2)}
E2 = {((0, q1, 1), (1, b, 2), (0, q2, 2)), ((0, q1, 1), (1, d, 2), (0, q4, 2)),

((0, q2, 1), (1, c, 2), (0, q2, 2)), ((0, q2, 1), (1, a, 2), (0, q3, 2)),

((0, q3, 1), (1, c, 2), (0, q4, 2))}
V3 = V2, LAP = (3, 2)

Similar to Procedure 1, we can design an array to mark the edges ((0, q, j − 1), (j −
1, aj, j), (0, q

′, j)) ∈ Et. Then, the set Uj−1 has s1 states (s1 ≤ k) and Vt has s2 states

Figure 1. The finite automaton A recognizes {ab, bab, bb}

Figure 2. The finite ♢-automaton A♢ extended from the finite automaton
A in Figure 1

Figure 3. The automaton A recognizes {(ab ∪ cb ∪ c)c∗ac, (a ∪ c)d}
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Figure 4. The ♢-automaton A♢ extended from the automaton A in Figure 3

Algorithm 4. Approach according to ♢-automata
Step 1. Build sets of states Vi and the edges Ei recognizing a language with the

length i. This step has the complexity size of O(l.m.k2).
Step 2. Check the string Si = a1a2 . . . al, aj ∈ A.

To check the string Si, we check the string S ′
i = (0, a1, 1).(1, a2, 2) . . . (l − 1, al, l)

on finite ♢-automaton A♢.
1. (n, s) = LAP
2. If (n < l) and (n = s) then {KQ = False and Exit}
3. U0 = I♢, t = 0
4. Repeat: Consider the labels aj in the string Si

5. Uj = ∅, t = t + 1
6. For each pair of states (0, q, j − 1) ∈ Uj−1 and (0, q′, j) ∈ Vt

7. If ((0, q, j − 1), (j − 1, aj, j), (0, q
′, j)) ∈ Et then Add (0, q′, j) to Uj.

8. If (t = n) then t = s // Repeat if Vt = Vs

9. Stop (1) If (j = l) and (Uj ∩ T♢ ̸= ∅) then {KQ = True and Exit}.
10. (2) If (j = l) or (Uj = ∅) then {KQ = False and Exit}.

(s2 ≤ k). Therefore, Step 2 has the complexity size of O(l.s1.s2). Checking the strings
{S1, S2, . . . , SN} on the finite ♢-automaton A♢ has the complexity size of O(l.s1.s2.N).
Therefore, Algorithm 4 has the approximate complexity size of O(l.m.k2 + l.s1.s2.N) ≤
O(l.k2.(m + N)).

Example 4.3. Using the finite automaton A in Example 4.2, check whether following
strings S ∈ A∗ are recognized by the automat A or not.
a) With S = abcac ∈ A∗. Implement steps of Algorithm 4:

l = |S| = 5 and S♢ = (0, a, 1).(1, b, 2).(2, c, 3).(3, a, 4).(4, c, 5)
U0 = I♢ = {(0, q0, 0), (0, q2, 0)}, U1 = {(0, q1, 1), (0, q2, 1), (0, q3, 1)}
U2 = {(0, q2, 2)}; U3 = {(0, q2, 3)}; U4 = {(0, q3, 4)}; U5 = {(0, q4, 5)}
It is realized that, (0, q4, 5) ∈ T♢. Therefore, the string S = abcac is recognized by the

finite automaton A.
b) With S = acbc ∈ A∗. Implement steps of Algorithm 4:

l = |S| = 5 and S♢ = (0, a, 1).(1, b, 2).(2, d, 3).(3, c, 4)
U0 = I♢ = {(0, q0, 0), (0, q2, 0)}, U1 = {(0, q1, 1), (0, q2, 1), (0, q3, 1)}
U2 = {(0, q2, 2)}, U3 = ∅.
Therefore, the string S = acbc is not recognized by the finite automaton A.
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With the above finite ♢-automaton model approach, we have a new view of the layers
based on the length of the recognized word. If we use function Proj() defined in Section 1,
we can present Algorithm 4 in array structure form: sets of states Vi, Uj are corresponding
to the 2-dimensional arrays V [i][p] and U [j][q], the edge Ei is a 3-dimensional array
E[i][q, a], we have

Algorithm 5. Set up in the array structure.
Step 1. Build sets V [i][q] and the edges E[i][q, a].
Step 2. Check the string Si = a1a2 . . . al, aj ∈ A.

1. (n, s) = LAP
2. If (n < l) and (n = s) then {KQ = False and Exit}
3. For k = 1 to |I| do U [0][k] = I[k],
4. Count U [0] = |I|, j = 0, t = 0
5. Do While (j < l)

{ // Known U [j − 1] and the label a[j]. Calculate U [j]
6. Count U [j] = 0, j = j + 1, t = t + 1
7. For p = 1 to Count U [j − 1] do
8. For q = 1 to Count V [t] do
9. If Trans(U [j − 1][p], a[j], V [t][q]) = TRUE then

10. {Count U [j] = Count U [j] + 1, U [j][Count U [j]] = q}
11. If (t = n) then t = s // Repeat if V [t] = V [s].
12. If (j = l) and (U [j] ∩ T ̸= ∅) then {KQ = True and Exit}.
13. If (j = l) or (Count U [j] = 0) then {KQ = False and Exit}. }

5. Conclusion. In this paper, new types of automata are introduced. Our result shows
that these automata can be considered as extension forms of traditional automata. Hence,
a new perspective on mathematical model of automaton is given and a new checking
algorithm is proposed, greatly reducing the complexity of the checking algorithm. Results
obtained to ♢-automaton enrich theory of languages and can provide us some applications
such as establishing new trapdoors in the area of cryptography.
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