NFA TO DFA CONVERSION: A NEW APPROACH USING LANGUAGES OF BOUNDED WORDS

Ho Ngoc Vinh¹ and Nguyen Thi Thu Ha^2

¹Information Technology Faculty Vinh University of Technology Education No 117 Nguyen Viet Xuan, HungDung, Nghe An, Vietnam hongocvinh@gmail.com

²Department of E-Commerce Electric Power University 235 Hoang Quoc Viet, TuLiem, Hanoi, Vietnam hantt@epu.edu.vn

Received March 2018; accepted June 2018

ABSTRACT. In this paper, concepts of bounded words on an alphabet A, \diamond -languages and monoid \diamond -morphisms are introduced. Some basic results for recognizable languages and regular languages of bounded words on A are obtained. These allow defining an extension of the automaton on the set of bounded words. Hence, a new perspective of mathematical model of sets of states, edges, languages recognized by the finite automaton according to the length of languages is given and a new checking algorithm is proposed, greatly reducing the complexity of the checking algorithm.

 $\textbf{Keywords:} \ \text{Bounded word, Monoid morphism, } \diamondsuit - \text{automata, } \diamondsuit - \text{recognizable, Algorithm}$

1. Introduction. The theory of formal languages, finite automata and complexity are modern branches in computer theory and their mathematical models play very important roles. There are a lot of works considering the relationship between these mathematical models. For example, a popular issue in studying the theory of formal languages and automata is checking whether the strings are recognized by a finite automaton. Many different checking algorithms have been proposed.

In this paper, we introduce the notions of bounded words on an alphabet A, \diamond -languages and monoid \diamond -morphisms (see also [3]). In addition, we give the new definitions of the regular \diamond -expressions, regular \diamond -languages and finite \diamond -automata. Hence, some basic results for recognizability of the \diamond -automata, (Proposition 3.1, Proposition 3.3), the relationship between regular language and regular \diamond -languages (Proposition 3.2), in special, the relationship between \diamond -automata, \diamond -recognizable and regular \diamond -languages are obtained. In Section 3, the algorithms of checking if a language L can be recognized by an automaton and their complexity are considered. Then, a new algorithm (Algorithm 4), with the \diamond -automaton approach, reducing the complexity compared with previous algorithms is proposed.

2. Languages of Bounded Words. At first, we recall some notions and notations; for more details, we refer to [4,6]. Let A be a finite alphabet and the set $B = \{0, 1\}$. The sets of bounded words (\diamondsuit -words) on A are $A_{\diamondsuit} = \{(i, a, j) | a \in A \text{ or } a = \varepsilon, i, j \in B\}$ and $A_{\diamondsuit}^* = \{(i, w, j) | w \in A^*, i, j \in B\} \cup \{\theta, e\}$. Then, each element $(i, w, j), w \in A^*$, is called a \diamondsuit -word (or a bounded word with borders i, j) extended from w in which e, θ are two new elements as the unit, the zero of the monoid A_{\diamondsuit}^* of all \diamondsuit -words respectively. It is easily seen that, A_{\diamondsuit}^* is a monoid by a product defined as follows: for any $x_1 = (i_1, w_1, j_1)$,

DOI: 10.24507/icicel.12.10.981

 $x_2 = (i_2, w_2, j_2)$ in A_{\diamondsuit}^* , if $j_1 = i_2$ then $x_1 \cdot x_2 = (i_1, w_1 w_2, j_2)$, else $x_1 \cdot x_2 = \theta$ and $\forall x \in A_{\diamondsuit}^*$, $x \cdot \theta = \theta \cdot x = \theta$, $x \cdot e = e \cdot x = x$.

We call A^*_{\Diamond} the \Diamond -monoid defined by A. A set $L \subseteq A^*_{\Diamond}$ is called an extended language $(\Diamond$ -language) on A. Whenever none of mistakes are made, we also use notation |x| as the length of x. In particular we make a convention: $|\theta| = -\infty$, |e| = 0 and |x| = 0 if $x \in \{(i, \varepsilon, j) | i, j \in B\}$. For $X, Y \subseteq A^*_{\Diamond}$, left and right quotients are defined as $Y^{-1}X = \{u \in A^*_{\Diamond} | \exists y \in Y : y.u \in X\}$ and $XY^{-1} = \{u \in A^*_{\Diamond} | \exists y \in Y : u.y \in X\}$. The function $Proj: A^*_{\Diamond} \to A^* \cup \{0\}$ is defined by $Proj(e) = \varepsilon$, $Proj(\theta) = 0$ and Proj(i, w, j) = w (where $0 \notin A^*$ as the new zero of the monoid $A^* \cup \{0\}$).

Definition 2.1. Let M be a monoid with the unit 1, the zero 0. Let $\varphi: A_{\diamondsuit}^* \to M$ be a function. Then, φ is called a monoid \diamondsuit -morphism (or \diamondsuit -morphism for short) if it satisfies the following conditions:

- (1) $x, y \in A^*_{\Diamond}$ and $x.y \neq \theta$ then $\varphi(x.y) = \varphi(x).\varphi(y)$ (2) $\varphi(e) = 1$
- $(3) \varphi(\theta) = 0$

Definition 2.2. Let $L \subseteq A^*_{\Diamond}$ and M be a monoid. We say that M saturates L if there exists a \Diamond -morphism $\varphi: A^*_{\Diamond} \to M$ such that $L = \varphi^{-1}(N)$ for some $N \subseteq M$. In this case, we also say that L is saturated by φ .

From Definition 2.2, if $N_1, N_2 \subseteq M$, imply that $\varphi^{-1}(N_1 \cap N_2) = \varphi^{-1}(N_1) \cap \varphi^{-1}(N_2)$, $\varphi^{-1}(N_1 \cup N_2) = \varphi^{-1}(N_1) \cup \varphi^{-1}(N_2)$, $\varphi^{-1}(N_1 \setminus N_2) = \varphi^{-1}(N_1) \setminus \varphi^{-1}(N_2)$. Moreover, if φ is subjective, we have $\varphi^{-1}(N_1^{-1}N_2) = \varphi^{-1}(N_1)^{-1}\varphi^{-1}(N_2)$, $\varphi^{-1}(N_1N_2^{-1}) = \varphi^{-1}(N_1)\varphi^{-1}(N_2)^{-1}$.

For each $L \subseteq A^*_{\Diamond}$, due to S. Eilenberg [1], we can apply a similar way to constructing a monoid M saturating L. We denote by $\mathcal{R}(A, M)$, the set of all \Diamond -languages saturated by M on A^*_{\Diamond} . According to [4], $\mathcal{R}(A, M)$ is closed under the boolean operations. Further, if φ is an epimorphism then $\mathcal{R}(A, M)$ is closed under the left quotients and right quotients.

3. Extended Recognizable Languages. In this section, we propose the notions of regular \diamond -expression and regular \diamond -language by following definitions.

Definition 3.1. Let A be a finite alphabet. A regular \diamond -expression on A^*_{\diamond} is defined recursively as follows.

(i) \emptyset , e, θ are regular \diamondsuit -expressions.

(ii) $\forall a \in A \text{ or } a = \varepsilon, \forall i, j \in B, (i, a, j) \text{ is a regular } \diamondsuit$ -expression.

(iii) If E_1 and E_2 are the regular \diamondsuit -expressions, then $(E_1 + E_2)$, $E_1 \cdot E_2$ and E_1^* are the regular \diamondsuit -expressions.

(iv) There is not any regular \diamond -expressions except the regular \diamond -expressions defined by (i), (ii) and (iii).

Then, we define regular \diamondsuit -languages.

Definition 3.2. Let A be a finite alphabet. A regular \diamond -languages determined by the regular \diamond -expression E on A^*_{\diamond} , denoted by L(E), is defined recursively as follows.

(i) $E = \emptyset$ then $L(E) = \emptyset$.

(*ii*) E = e then $L(E) = \{e\}.$

(iii) $E = \theta$ then $L(E) = \{\theta\}.$

(iv) $E = (i, \varepsilon, j)$ then $L(E) = \{(i, \varepsilon, j)\}, \forall i, j \in B.$

 $(v) \ \forall (i, a, j) \in A_{\Diamond}, \ E = (i, a, j) \ then \ L(E) = \{(i, a, j)\}.$

(vi) If E_1 and E_2 are the regular \diamondsuit -expressions and $L(E_1)$ and $L(E_2)$ have been defined, $E = (E_1 + E_2)$ then $L(E) = L(E_1) \cup L(E_2)$, $E = E_1 \cdot E_2$ then $L(E) = L(E_1) \cdot L(E_2)$ and $E = E_1^*$ then $L(E) = L(E_1)^*$.

(vii) Only the \diamond -languages which are defined by (i), (ii), (iii), (iv), (v) and (vi) are regular \diamond -languages.

Combining with a finite automaton $\mathcal{A} = (A, Q, \delta, I, T)$, we define a special form of finite automata that accepts a set of \diamond -words on A^*_{\diamond} as follows.

Definition 3.3. Let $\mathcal{A} = (A, Q, \delta, I, T)$ be a nondeterministic finite automaton, we define a finite extended automaton (for brevity, \diamond -automaton) \mathcal{A}_{\diamond} by a 5-tuple $\mathcal{A}_{\diamond} = (A_{\diamond}, Q_{\diamond}, \delta_{\diamond}, I_{\diamond}, T_{\diamond})$ satisfying:

 $-A_{\Diamond} = \{(i, a, j) | a \in A, i, j \in B\} \cup \{e, \theta\}$ is considered as the alphabet of \mathcal{A}_{\Diamond} .

 $-Q_{\diamondsuit} = \{(i,q,j) | q \in Q, i, j \in B\} \cup \{q_{\theta}\}$ is the finite nonempty set of the states, where q_{θ} is a new sink state.

 $-I_{\Diamond} = \{(i,q,j) | q \in I, i, j \in B\}$ is the set of initial states.

 $-T_{\Diamond} = \{(i,q,j) | q \in T, i, j \in B\}$ is the set of final states.

- Denote by $\mathcal{P}(Q_{\Diamond})$ the set of all subsets of Q_{\Diamond} , then the transition function $\delta_{\Diamond} \colon Q_{\Diamond} \times A^*_{\Diamond} \to \mathcal{P}(Q_{\Diamond})$ is defined as follows: for any (i, q, j) in Q_{\Diamond} ,

$$\begin{split} \delta_{\Diamond}((i,q,j),e) &= (i,q,j) \text{ where } e \in A^*_{\Diamond}.\\ \delta_{\Diamond}((i,q,j),\theta) &= q_{\theta} \text{ where } \theta \in A^*_{\Diamond}.\\ \delta_{\Diamond}((i,q,j),(j',a,k)) \ni (i,q',k) \Leftrightarrow \forall a \in A: \ \delta(q,a) \ni q' \text{ and } j = j', \text{ otherwise}\\ &\quad if \ j \neq j' \text{ then } \delta_{\Diamond}((i,q,j),(l,a,k)) = q_{\theta}. \end{split}$$

For simplicity, with $s, s' \in Q$, we write s.x instead of $\delta_{\Diamond}(s, x), x = e, \theta$ or $x = (l, a, k), a \in A$, and it can be extended inductively on length to any \Diamond -word $x \in A_{\Diamond}^*$: $s.x = Y_{s' \in s.u, x = u.y} s'.y$. A sequence x_1, x_2, \ldots, x_n of \Diamond -words in A_{\Diamond}^* is said to be *accepted* by \mathcal{A}_{\Diamond} if and only if there exists $q_{\Diamond} \in T_{\Diamond}$, such that $q_{\Diamond} \in (((q_0.x_1).x_2)\ldots).x_n$ and in that case \Diamond -word $x = x = x_1.x_2\ldots x_n$ is said to be *accepted* by \mathcal{A}_{\Diamond} . Denote by $\mathcal{L}(\mathcal{A}_{\Diamond})$ the set of all \Diamond -words recognized by \mathcal{A}_{\Diamond} , that is $\mathcal{L}(\mathcal{A}_{\Diamond}) = \{x \in A_{\Diamond}^* | \exists q_0 \in I_{\Diamond} \text{ such that } q_0.x \cap T_{\Diamond} \neq \emptyset\}$. We call a \Diamond -language L to be *accepted* by \mathcal{A}_{\Diamond} if $L = \mathcal{L}(\mathcal{A}_{\Diamond})$.

For brevity, from now on, we write finite \diamond -automaton (automaton) instead of nondeterministic finite \diamond -automaton (automaton).

Definition 3.4. A set $L \subseteq A^*_{\diamond}$ is called an extended recognizable language (or \diamond -recognizable) if $L = \mathcal{L}(\mathcal{A}_{\diamond})$ for some finite \diamond -automaton \mathcal{A}_{\diamond} .

We call a language $L \subseteq A^*_{\Diamond}$ a \diamond -recursive language if the membership problem for L is solvable. The following results are fundamental for the case of finite \diamond -automata which can be verified directly by definition.

Fact 1. If $L \subseteq A^*_{\Diamond}$ is \Diamond -recognizable then L is \Diamond -recursive.

Let $L \subseteq A^*$, we build an extension operator of language $\diamond: L' = \{(i, w, j) \in A^*_{\diamond} | w \in L, i, j \in B\}$ and $L_{\diamond} = L'$ if $\varepsilon \notin L$; $L_{\diamond} = L' \cup \{e\}$ if $\varepsilon \in L$. A non-trivial relationship between \diamond -recognizable languages and recognizable languages is showed by Fact 2 below. **Fact 2.** Let $L \subseteq A^*$. If L is recognizable by a finite automaton \mathcal{A} then L_{\diamond} is recognizable by a finite \diamond -automaton \mathcal{A}_{\diamond} , where \mathcal{A}_{\diamond} is a \diamond -automaton expanded form \mathcal{A} .

The properties above and the classical results confirm the equivalent of deterministic and nondeterministic finite automata. So, we have following corollary.

Corollary 3.1. Let $L \subseteq A^*_{\diamond}$. If L is recognizable by a finite \diamond -automaton then it is also recognizable by a deterministic finite \diamond -automaton.

Next, we will show some fundamental results for \diamond -automata, which can be proved classically similar to the methods used in [2,5,7]. Some results are well-known so their proofs are ignored in this paper.

Proposition 3.1. Let $L \subseteq A^*_{\diamond}$. Then L is \diamond -recognizable if and only if L is regular \diamond -language.

A non-trivial relationship between regular \diamond -languages and regular languages is shown by the following result. **Proposition 3.2.** Given a regular language $L \subseteq A^*$. Then $\operatorname{Proj}^{-1}(L)$ is a regular \diamond language on A^*_{\diamond} . There exists L which is not a regular \diamond -language on A^*_{\diamond} but Proj(L) is a regular language on A^* .

Proof: By definition and assumption, L = L(E) for some regular \diamondsuit -expression E. We will prove by induction on the construction of E.

+ If $E = \emptyset$ then $L(E) = \emptyset$. Then $Proj^{-1}(L) = \emptyset$ is a regular \diamondsuit -language on A^*_{\diamondsuit} . + If $E = \varepsilon$ then $L(E) = \{\varepsilon\}$. Therefore, $Proj^{-1}(L) = \{e, (i, \varepsilon, j) : i, j \in B\}$ is a finite set; this implies that L is a regular \diamondsuit -language on A^*_{\diamondsuit} .

+ Now, we suppose E_1 and E_2 are the regular expressions on A^* and $Proj^{-1}(L(E_1))$ and $\operatorname{Proj}^{-1}(L(E_2))$ are the regular \diamond -languages on A_{\diamond}^* already. Then, from the definition of the projection function $Proj^{-1}$, we easily get:

$$Proj^{-1}(L(E_1) \cup L(E_2)) = Proj^{-1}(L(E_1)) \cup Proj^{-1}(L(E_2))$$
$$Proj^{-1}(L(E_1).L(E_2)) = Proj^{-1}(L(E_1)).Proj^{-1}(L(E_2))$$
$$Proj^{-1}(L(E_1)^*) = Proj^{-1}(L(E_1))^*$$

Hence, the language $Proj^{-1}(L)$ is a regular \diamondsuit -language on A^*_{\diamondsuit} .

For the second statement, we consider the following example: let $A = \{a\}$ be a singleton alphabet and let $L_1 \subsetneq A^*$ be a non-recursive language on A^* (according to classical results, there exists such an L_1). Therefore, it does not have any decision algorithm for the membership problem of L_1 . We define

$$L = \{(1, w, 1) | w \in L_1\} \cup \{(0, w, 0) | w \notin L_1\}$$

It is easily seen that L is also non-recursive, that means the membership problem for L is also not decidable, but the image Proj(L) is exactly A^* , the regular one.

Lemma 3.1. Let \mathcal{A}_{\Diamond} be a finite \Diamond -automaton and x be a \Diamond -word of A_{\Diamond}^+ admitting two different factorizations $x = x_1.x_2...x_n = x'_1.x'_2...x'_m$ where $n, m \ge 1, x_i, x'_j \in A_{\Diamond}^*$, $i = 1, \ldots, n, j = 1, \ldots, m$. If the sequence x_1, x_2, \ldots, x_n is recognized by \mathcal{A}_{\Diamond} , then the sequence x'_1, x'_2, \ldots, x'_m is also recognized by $\mathcal{A}_{\diamondsuit}$.

Lemma 3.2. Let \mathcal{A}_{\Diamond} be a finite \Diamond -automaton and $x, y, z \in A^*_{\Diamond}, z = x.y \neq \theta$ with some factorizations $x = x_1 \cdot x_2 \cdot \cdot \cdot x_n$, $y = y_1 \cdot y_2 \cdot \cdot \cdot y_m$, $z = z_1 \cdot z_2 \cdot \cdot \cdot z_k \in A_{\Diamond}^+$ where $n, m, k \ge 1, x_i, y_j, z_l \in A^*_{\diamond}, i = 1, \dots, n, j = 1, \dots, m, l = 1, \dots, k.$ If the sequence $x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_m$ are recognized by \mathcal{A}_{\Diamond} then the sequence z_1, z_2, \ldots, z_k is also recognized by \mathcal{A}_{\Diamond} .

Form Lemma 3.1 and Lemma 3.2, we have following result.

Proposition 3.3. Let $L \subseteq A^*_{\Diamond}$. Then, L is \Diamond -recognizable if and only if there exists a \diamondsuit -morphism $\varphi: A^*_{\diamondsuit} \to M, M$ is finite, such that L is saturated by φ .

From the propositions above, we have

Corollary 3.2. Let $L \subseteq A^*_{\diamond}$. The following conditions are equivalent.

- (i) L is \diamondsuit -recognizable.
- *(ii)* L is saturated by a finite monoid.
- (iii) L is regular \diamondsuit -language.

4. Conversion of Nondeterministic Finite Automata (NFA) to Deterministic Finite Automata (DFA). A popular issue when studying on the theory of formal language and automata is to check whether a string $S \in A^*$ is recognized by a finite automaton or not. Many different algorithms of checking have been presented. Next, we are presenting those algorithms again and propose a new algorithm in the approach of \diamond -language to considerably reduce complexity of checking algorithm.

Problem: Let language $L = \{S_1, S_2, \ldots, S_N\}, S_i \in A^*$ is a string with the size $\leq l$ characters and finite automaton $\mathcal{A} = (A, Q, \delta, I, T)$ on the alphabet A with m elements, the set of states Q consists of k states. Find out strings $S_i \in L$ so that $S_i \in \mathcal{L}(\mathcal{A})$.

Algorithm 1. With finite automaton \mathcal{A} , check whether all strings $S_i \in L$ are recognized by automaton \mathcal{A} ? Then, this algorithm has complexity of $O(l.m.k^k.N)$.

Algorithm 2. (Deterministicitization).

Step 1. Change the nondeterministic finite automaton \mathcal{A} into the deterministic finite automaton \mathcal{A}' . This step has complexity of $\geq O(2^k)$.

Step 2. Use the deterministic finite automaton \mathcal{A}' to solve the problem: Find out strings $S_i \in L$ so that $S_i \in \mathcal{L}(\mathcal{A}')$. This step has complexity of O(l.N).

Therefore, this algorithm has approximate complexity of $\geq O(2^k + l.N)$.

Algorithm 3. (Breadth First Search)

Check the string $S_i = a_1 a_2 \dots a_l$, $a_j \in A$, on the finite automation. 1. $N_0 = I$ 2. For j = 1 to l do $\begin{cases} //Known N_{j-1}, \text{ calculate } N_j \end{cases}$ 3. $N_j = \emptyset$ 4. For each q in N_{j-1} do 5. Find a neighbor q' of q with the label a_j such that $(q, a_j, q') \in E(A)$ then 6. Add q' in N_j .

It is realized that N_{j-1} has k states, q has m neighbors and each neighbor has k accessible states. Therefore, checking a string S_i has the approximate complexity of $O(l.m.k^2)$. Therefore, this algorithm has complexity of $O(l.m.k^2.N)$.

In this part, we are going to present an extended form of the finite automaton \mathcal{A} and if without confusion, we call it finite \diamondsuit -automaton $\mathcal{A}_{\diamondsuit}$, the set of bounded B is not only $\{0,1\}$, but also extended to $B = \{0,1,2,\ldots,l\} \subseteq \mathbb{N}$. Next, we use finite \diamondsuit -automaton $\mathcal{A}_{\diamondsuit}$ to solve the problem of checking whether the strings are recognized by the finite automaton \mathcal{A} or not.

Let \mathcal{A} be a finite automaton and l be the length of the longest string recognized by the finite automaton \mathcal{A} . Then, finite \diamond -automaton \mathcal{A}_{\diamond} extended from the finite automaton \mathcal{A} by a 5-tuple $\mathcal{A}_{\diamond} = (A_{\diamond}, Q_{\diamond}, \delta_{\diamond}, I_{\diamond}, T_{\diamond})$

 $-A_{\Diamond} = \{(i, a, i+1) | a \in A, i = 0, \dots, l-1\}$ is the alphabet of \Diamond -automaton \mathcal{A}_{\Diamond} .

 $-Q_{\Diamond} = \{(0,q,i) | q \in Q, i = 0, \dots, l\}$ is the finite nonempty set of the states.

 $-I_{\diamond} = \{(0,q,0) | q \in I\}$ is the set of initial states.

 $-T_{\diamond} = \{(0,q,i) | q \in T, i = 0, \dots, l\}$ is the set of final states.

Let a word $w = a_1 \dots a_l \in A^*$. Then, the word w is extended into $w_{\diamondsuit} = (0, a_1, 1) \dots (l - 1, a_l, l)$ and we denote $\mathcal{L}(\mathcal{A}_{\diamondsuit})$ as a set of \diamondsuit -word recognized by \diamondsuit -automaton $\mathcal{A}_{\diamondsuit}$, we have: $\mathcal{L}(\mathcal{A}_{\diamondsuit}) = \{w \in A^* | \exists (0, q, 0) \in I_{\diamondsuit} \text{ such as } \delta_{\diamondsuit}((0, q_0, 0), w_{\diamondsuit}) \cap T_{\diamondsuit} \neq \varnothing \}.$

With the above definition of \diamond -automata, we have a new mathematic overview of sets of states $V_i = \{(0, q, i) | q \in Q, i \in B\}$, sets of edges $E_i = \{((0, q, i - 1), (i - 1, a, i), (0, q', i))\}$ and set of languages $S = \{(0, a_1, 1) \dots (l - 1, a_l, l) | l \in B, a_i \in A, i = 1, \dots, l\}$ recognized by the finite automaton \mathcal{A} according to the length of language. In the data structure view, for example: the set of edges $E_i = \{((0, q, i - 1), (i - 1, a, i), (0, q', i))\}$ is represented as E[i][q, a] = q' where i is index of the array or the register (It will be described in detail in the next section).

The following procedure is to build layers of the set of states V_0, \ldots, V_l and edges E_1, \ldots, E_l corresponding to the length of language recognized by the finite automaton \mathcal{A} .

Procedure 1. To build layers V_i and E_i

1. $V_0 = I_{\diamondsuit}, E_i = \emptyset$ Repeat: Known V_{i-1} and calculate V_i , E_i (for i = 1, ..., l) 2. $\overline{V_i} = \emptyset, E_i = \emptyset$ 3. For each $(0, q, i - 1) \in V_{i-1}$ 4. For each $a \in A$ and $q' \in Q$ 5.If $(q, a, q') \in E(A)$ then Add (0, q', i) to V_i . That is $V_i = \{(0, q', i)\}$ 6. $\in Q_{\Diamond}|\exists\}$ path has length i from $q_0 \in I \rightsquigarrow q' \in \operatorname{Proj}(V_i)$ 7. $E_i = E_i \cup \{((0, q, i - 1), (i - 1, a, i), (0, q', i))\}$ Stop: $(V_i = V_{k < i})$ or $(V_i = \emptyset)$ 8.

Procedure 1 stops if $(V_i = V_{k < i})$ or $(V_i = \emptyset)$. To mark these two cases, we use the variable LAP = (i, k) in the case $V_i = V_{k < i}$; otherwise, LAP = (i, i).

To reduce complexity of Procedure 1, in the initial setup of the finite automaton \mathcal{A} , corresponding to each edge (q, a, q'), we add an array variable $Trans(q, a, q') \in \{TRUE, FALSE\}$ to mark whether edges change successfully.

Procedure 2. Put in and mark successfully transition edges. //k is the number of states. 1. For q = 1 to k do //m is the number of characters in the alphabet A. 2. For a = 1 to m do 3. For q = 1 to k do 4. Trans(q, a, q') = FALSE5. For i = 1 to CountArc do // CountArc is the number of edges. // Put in Edge (q, a, q'). 6. { Put in values q, a, q'. 7. $E[i][q, a] = q', Trans(q, a, q') = TRUE \}$ 8. For each q in T do Fin(q) = TRUE// Mark final states.

Procedure 2 has the approximate complexity size of $O(m.k^2)$. Then, the line 6 of Procedure 1 can be replaced by:

If Trans(q, a, q') = TRUE then Add(0, q', i) to V_i .

Therefore, each set V_{i-1} has the size $k_1 \leq k$. Then, if we have l sets $\{V_1, V_2, \ldots, V_l\}$ then Procedure 1 has approximate complexity of $O(m.k^2 + l.m.k_1.k) \leq O(l.m.k^2)$.

Example 4.1. Let $\mathcal{A} = (A, Q, \delta, I, T)$ be a finite automaton where with $A = \{a, b\}$, $Q = \{q_0, q_1, q_2, q_3\}$, $I = \{q_0\}$, $T = \{q_3\}$ and the edges (q_0, a, q_1) , (q_0, b, q_2) , (q_1, b, q_3) , (q_2, a, q_1) , (q_2, b, q_3) .

Easy to see that, \mathcal{A} recognizes the language $\{(ab + cb + a)c^*ac, (a + c)d\}$ (cf. Figure 1). Then, the layers V_i and E_i of \diamond -automaton are defined as follows: (cf. Figure 2)

$$\begin{split} V_0 &= \{(0,q_0,0)\}, \, V_1 = \{(0,q_1,1), (0,q_2,1)\} \\ E_1 &= \{((0,q_0,0), (0,a,1), (0,q_1,1)), ((0,q_0,0), (0,b,1), (0,q_2,1))\} \\ V_2 &= \{(0,q_3,2), (0,q_1,2)\} \\ E_2 &= \{((0,q_1,1), (1,b,2), (0,q_3,2)), ((0,q_2,1), (1,a,2), (0,q_1,2)), \\ &\quad ((0,q_2,1), (1,b,2), (0,q_3,2))\} \\ V_3 &= \{(0,q_3,3)\}, \, E_3 = \{((0,q_1,2), (2,b,3), (0,q_3,3))\} \\ V_4 &= \varnothing, \, LAP = (4,4) \end{split}$$

Example 4.2. Let $\mathcal{A} = (A, Q, \delta, I, T)$ be a finite automaton where $A = \{a, b, c, d\}, Q = \{q_0, q_1, q_2, q_3, q_4\}, I = \{q_0, q_2\}, F = \{q_4\}$ and the edges $(q_0, a, q_1), (q_0, a, q_2), (q_0, c, q_1), (q_1, b, q_2), (q_1, d, q_4), (q_2, a, q_3), (q_2, c, q_2), (q_3, c, q_4).$

Easy to see that, \mathcal{A} recognizes the language $\{ab, bab, bb\}$ (cf. Figure 3). The layers V_i and transition states $E(\mathcal{A}_{\diamond})$ of \diamond -automaton \mathcal{A}_{\diamond} are defined as follows: (cf. Figure 4)

 $V_0 = \{(0, q_0, 0), (0, q_2, 0)\}, V_1 = \{(0, q_1, 1), (0, q_2, 1), (0, q_3, 1)\}$

$$\begin{split} E_1 &= \{ ((0,q_0,0), (0,a,1), (0,q_1,1)), ((0,q_0,0), (0,c,1), (0,q_1,1)), \\ &\quad ((0,q_0,0), (0,a,1), (0,q_2,1)), ((0,q_2,0), (0,c,1), (0,q_2,1)), \\ &\quad ((0,q_2,0), (0,a,1), (0,q_3,1)) \} \\ V_2 &= \{ (0,q_2,2), (0,q_4,2), (0,q_3,2) \} \\ E_2 &= \{ ((0,q_1,1), (1,b,2), (0,q_2,2)), ((0,q_1,1), (1,d,2), (0,q_4,2)), \\ &\quad ((0,q_2,1), (1,c,2), (0,q_2,2)), ((0,q_2,1), (1,a,2), (0,q_3,2)), \\ &\quad ((0,q_3,1), (1,c,2), (0,q_4,2)) \} \\ V_3 &= V_2, \ LAP = (3,2) \end{split}$$

Similar to Procedure 1, we can design an array to mark the edges $((0, q, j - 1), (j - 1, a_j, j), (0, q', j)) \in E_t$. Then, the set U_{j-1} has s_1 states $(s_1 \leq k)$ and V_t has s_2 states

FIGURE 1. The finite automaton \mathcal{A} recognizes $\{ab, bab, bb\}$

FIGURE 2. The finite \diamond -automaton \mathcal{A}_{\diamond} extended from the finite automaton \mathcal{A} in Figure 1

FIGURE 3. The automaton \mathcal{A} recognizes $\{(ab \cup cb \cup c)c^*ac, (a \cup c)d\}$

FIGURE 4. The \diamond -automaton \mathcal{A}_{\diamond} extended from the automaton \mathcal{A} in Figure 3

Algorithm 4. Appr	roach accordina	a to \diamond -autor	nata
-------------------	-----------------	--------------------------	------

Step 1. Build sets of states V_i and the edges E_i recognizing a language with the length i. This step has the complexity size of $O(l.m.k^2)$. Step 2. Check the string $S_i = a_1 a_2 \dots a_l, a_i \in A$. To check the string S_i , we check the string $S'_i = (0, a_1, 1) \cdot (1, a_2, 2) \dots (l - 1, a_l, l)$ on finite \diamondsuit -automaton A_{\diamondsuit} . (n,s) = LAP1. 2.If (n < l) and (n = s) then $\{KQ = False and Exit\}$ $U_0 = I_{\diamondsuit}, t = 0$ 3. Repeat: Consider the labels a_i in the string S_i 4. 5. $U_i = \emptyset, t = t + 1$ 6. For each pair of states $(0, q, j - 1) \in U_{j-1}$ and $(0, q', j) \in V_t$ 7. If $((0,q,j-1), (j-1,a_j,j), (0,q',j)) \in E_t$ then Add (0,q',j) to U_j . If (t = n) then t = s// Repeat if $V_t = V_s$ 8. $\{KQ = True and Exit\}.$ 9.

9. <u>Stop</u> (1) If (j = l) and $(U_j \cap T_{\diamond} \neq \emptyset)$ then {KQ = True and Exit}. 10. (2) If (j = l) or $(U_j = \emptyset)$ then {KQ = False and Exit}.

 $(s_2 \leq k)$. Therefore, Step 2 has the complexity size of $O(l.s_1.s_2)$. Checking the strings $\{S_1, S_2, \ldots, S_N\}$ on the finite \diamond -automaton \mathcal{A}_{\diamond} has the complexity size of $O(l.s_1.s_2.N)$. Therefore, Algorithm 4 has the approximate complexity size of $O(l.m.k^2 + l.s_1.s_2.N) \leq O(l.k^2.(m+N))$.

Example 4.3. Using the finite automaton \mathcal{A} in Example 4.2, check whether following strings $S \in A^*$ are recognized by the automat \mathcal{A} or not.

a) With S = abcac ∈ A*. Implement steps of Algorithm 4: l = |S| = 5 and S_◊ = (0, a, 1).(1, b, 2).(2, c, 3).(3, a, 4).(4, c, 5) U₀ = I_◊ = {(0, q₀, 0), (0, q₂, 0)}, U₁ = {(0, q₁, 1), (0, q₂, 1), (0, q₃, 1)} U₂ = {(0, q₂, 2)}; U₃ = {(0, q₂, 3)}; U₄ = {(0, q₃, 4)}; U₅ = {(0, q₄, 5)} It is realized that, (0, q₄, 5) ∈ T_◊. Therefore, the string S = abcac is recognized by the finite automaton A.
b) With S = acbc ∈ A*. Implement steps of Algorithm 4:

b) With $S = acbc \in A^*$. Implement steps of Algorithm 4: $l = |S| = 5 \text{ and } S_{\Diamond} = (0, a, 1).(1, b, 2).(2, d, 3).(3, c, 4)$ $U_0 = I_{\Diamond} = \{(0, q_0, 0), (0, q_2, 0)\}, U_1 = \{(0, q_1, 1), (0, q_2, 1), (0, q_3, 1)\}$ $U_2 = \{(0, q_2, 2)\}, U_3 = \emptyset$. Therefore, the string S = acbc is not recognized by the finite automaton \mathcal{A} . With the above finite \diamond -automaton model approach, we have a new view of the layers based on the length of the recognized word. If we use function Proj() defined in Section 1, we can present Algorithm 4 in array structure form: sets of states V_i , U_j are corresponding to the 2-dimensional arrays V[i][p] and U[j][q], the edge E_i is a 3-dimensional array E[i][q, a], we have

Algorithm 5. Set up in the array structure.
Step 1. Build sets $V[i][q]$ and the edges $E[i][q, a]$.
Step 2. Check the string $S_i = a_1 a_2 \dots a_l, a_j \in A$.
1. $(n,s) = LAP$
2. If $(n < l)$ and $(n = s)$ then $\{KQ = False and Exit\}$
3. For $k = 1$ to $ I $ do $U[0][k] = I[k]$,
4. $Count_U[0] = I , \ j = 0, \ t = 0$
5. Do While $(j < l)$
$\{ // Known U[j-1] and the label a[j]. Calculate U[j] \}$
6. $Count_U[j] = 0, \ j = j+1, \ t = t+1$
7. For $p = 1$ to Count_ $U[j-1]$ do
8. For $q = 1$ to Count_V[t] do
9. If $Trans(U[j-1][p], a[j], V[t][q]) = TRUE$ then
10. $\{Count_U[j] = Count_U[j] + 1, U[j][Count_U[j]] = q\}$
11. If $(t = n)$ then $t = s$ // Repeat if $V[t] = V[s]$.
12. If $(j = l)$ and $(U[j] \cap T \neq \emptyset)$ then $\{KQ = True \text{ and } Exit\}.$
13. If $(j = l)$ or $(Count_U[j] = 0)$ then $\{KQ = False and Exit\}$.

5. Conclusion. In this paper, new types of automata are introduced. Our result shows that these automata can be considered as extension forms of traditional automata. Hence, a new perspective on mathematical model of automaton is given and a new checking algorithm is proposed, greatly reducing the complexity of the checking algorithm. Results obtained to \diamond -automaton enrich theory of languages and can provide us some applications such as establishing new trapdoors in the area of cryptography.

REFERENCES

- [1] S. Eilenberg, Automata, Languages and Machines, Volume B, Academic Press, New York, 1976.
- [2] D. J. E. Hopcroft and J. D. Ullman, Formal Languages and Their Relation to Automata, Addison-Wesley Publishing Company, 1969.
- [3] H. N. Vinh and P. T. Huy, Codes of bounded words, Proc. of the 3rd International Conference on Computer and Electrical Engineering (ICCEE 2010), Chengdu, China, 2010.
- [4] H. N. Vinh and N. D. Han, A novel method based on the post correspondance problem for designing cryptosystems, Journal of Science & Technology – Technical Universities, no.121, pp.58-63, 2017.
- [5] T. Jastrzab, On parallel induction of nondeterministic finite automata, Procedia Computer Science, vol.80, pp.257-268, 2016.
- [6] N. D. Han, H. N. Vinh, D. Q. Thang and P. T. Huy, Quadratic algorithms for testing of codes and ◊-codes, Fundamenta Informaticae, vol.130, pp.1-15, 2014.
- [7] T. Marschall, Construction of minimal deterministic finite automata from biological motifs, *Theoretical Computer Science*, vol.412, pp.922-930, 2011.