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Abstract. In this paper, an improved P-transformation algorithm is proposed that uti-
lizes the golden ratio as an improvement to solve global optimization. The proposed
methodology was tested for several standard benchmark optimization problems as well as
on optimizing the gain for a double inverted pendulum control. Our algorithm has shown
promising results in terms of efficiency and accuracy when compared with the genetic
algorithm.
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1. Introduction. Finding the global optimum of the objective function is very important
in engineering problems. Most existing optimization methods are essentially local in
nature. Multi-dimensional, nonlinear objective functions have several extreme values
and finding the global extremum of such functions is difficult. Chichinadze [1,4] has
demonstrated that such problems can be solved by transforming the objective function
through an Ψ transformation into a function Ψ(ζ) of one new variable ζ. He showed that
the value of this transformed function decreases continuously to zero as the new variable
is increased in value. As the value of the transformed function equals zero, the value of
the new variable represents the global extremum of the original objective function. For
simplicity, we will call this method the P-transformation method.

Adamczyk et al. [2] reformulated the P-transformation method using least squares pa-
rameter estimation and utilized the neural network for an optimal coordinate search.
Later, Zohdy et al. [3] implemented a new global non-sequential search method for op-
timization in n-dimensions by utilizing a stochastic methodology for robust global opti-
mization by extending the least squares parameter estimation. This work was therefore
extended to both deterministic and probabilistic problems. They benchmarked their al-
gorithm on a two-variable banana function. In this paper, we study the P-transformation
algorithm as a universal heuristic optimization approach.

Our motivation derives from the desire to obtain global extremum for multi-dimensional
objective functions, multi-objective functions, continuous, and non-continuous functions.
Heuristic methods like the genetic algorithm [5-8] either fail to find the global extremum
for such problems or are too expensive.

The main idea of the P-transformation is to convert the multi-dimensional objective
function to an univariant objective function. In this paper, we propose an improvement
to the existing P-transformation algorithm by utilizing the golden ratio [9]. We therefore
applied the golden ratio to the transformed function, which accelerated the convergence
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of the P-transformation method. Examples will demonstrate that our proposal is more
efficient than the existing P-transformation and much more efficient than the genetic
algorithm.

This paper is divided into five sections. In Section 2, we conduct a review of the
P-transformation algorithm. In Section 3, we offer our proposed improvement to the
P-transformation method. In Section 4, we first demonstrate the efficiency of our pro-
posal by testing it on some benchmark problems and comparing the results with the
P-transformation method. Then, we demonstrate the efficiency of our proposed method
by comparing it with the genetic algorithm and the P-transformation method to optimize
the controller gain for a double inverted pendulum problem. In Section 4, our findings
are offered in Table 1 and Table 2 in 4.1 and 4.2 respectively. In Section 5, we conclude
the paper.

2. Review of the P-Transformation Algorithm. In this section, we briefly describe
the P-transformation algorithm as explained in the works of Adamczyk et al. [2]. The
goal of the algorithm is to find the global maximum of an objective function. The trans-
formation of the objective function, f(x) where x is an n-dimensional vector, is carried
out by a nonlinear operator by

P{f(x)} → G(t) (1)

where t is a scalar quantity that is taken to be pointwise Lebesgue’s [10] division of the
objective function f(x)

min(f(x)) = t0 < t1 · · · ti < tmax = max(f(x)) (2)

Let D be the set on which the function f(x) is to be determined. D∗ is a subset of D on
which f(x) also satisfies the constraints. Let Di be the set on which abs(f(x)) >= ti.

Given a function H(x) such that

H(x) =

{
0 at D|D∗

1 at D∗ (3)

Riemann integral for the function above on the set Di is equal to its measure µi in Equation
(4) below. ∫

Di

. . .

∫
H(x)dxi . . . dxn = µi (4)

The function G(t) as illustrated in Figure 1 can be estimated from the integral shown in
Equation (4). Set Di can be computed using statistical tests. Let Pi be the probability
that a point x randomly chosen from D∗ also belongs to Di and can be approximated by
the ratio s(r)/r, where r is the number of randomly chosen points x (length of a, and b

Figure 1. Type 1 – continuous objective function
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on Figure 1) and s(r) is the number of successes. Therefore, for any ε > 0, as r → ∞,
the ratio s(r)/r can mimic the measure µi of the Di set.

lim
γ→∞

Pr

(
S(r)

r
− Pi

)
> ε = 0 (5)

µi = s(r)/r (6)

Once we have the µi’s we can estimate the quadratic function R(t) as shown in Equation
(7) below

R(t) = a0t
2 + a1t + a2 (7)

where a0, a1, and a2 can be found by utilizing the least squares approach with the following
assumptions.  a0

a1

a2

 = φT

 µ1

µ2

µ3

 (8)

where

φ =

 t21 t1 1

t22 t2 1

t23 t3 1

 (9)

The P-transformation algorithm [2,3] can be summarized as follows:

1- Generate N random vectors xn

2- Check the constraints for each xi

3- Evaluate the function f(xn) for all xi’s that satisfy the constraints
4- Let t1 = (min f(x) + max f(x))/2
5- Calculate µi as defined in Equation (6)
6- Repeat step 5 for each ti where ti+1 = ti + ∆t until the condition in Equation (6) is no

longer valid
7- Extrapolate G(t) using R(t) in Equation (7)
8- Find the roots for R(t) = 0 by calculating Equation (8)

a. if a0 < 0, then the global maximum

F (x∗) = max(R1, R2),

where R1, R2 are the roots of R(t)
b. if a0 > 0 then F (x∗) = min(Real(R1, R2))

9- Repeat the algorithm until ∆F (x∗) << ε.

The P-transformation also can be used on Type 2 and Type 3 functions as illustrated
in Figure 2 and Figure 3 respectively.

Figure 2. Type 2 – continuous objective function where its derivatives
undergo breaks
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Figure 3. Type 3 – non-continuous objective function which is described
by different equations

The P-transformation algorithm also can handle problems in the absence of the objec-
tive function or black box functions.

3. Improved P-Transformation Algorithm. Since the main idea of the P-transfor-
mation is to convert the multi-dimensional objective function to an univariant objective
function, G(t). This function has two significant distinguishing characters; first, G(t) is
monotonically decreasing as t increases in almost all types of functions, and second, the
approximate value of the global extremum of the original objective function is determined
as the value of t when G(t) = 0.

The golden section search is often used for finding the local optimum value for univariant
models. We have applied the golden section search [18] to the G(t) and found that first
characteristic of the G(t) steered the golden section search to search only in one direction.
Therefore, we introduce the golden ratio (Fibonacci search) [9] to augment the search as
an improvement to the existing algorithm.

The golden ratio is applied on G(t) to calculate the new triplet of t’s in steps (6) and
(7) of the algorithm presented in the previous section. We calculated the triplet t’s to
follow the golden ratio pattern by the following equation:

ti+2 − ti
ti+1 + ti

=
ti+1 − ti

ti+2 + ti+1

=
1 +

√
5

2
(10)

We calculate the associated µi and apply the golden section search iteration on the triplets
of t’s points.

4. Examples. In this section, we first compare our method with the existing P-transfor-
mation method by testing it with common benchmark functions like the Ackley and the
Griewank functions.

Next, we optimize the controller gain of a double inverted pendulum problem. A
comparison of results is shown with our proposed method against the P-transform and
genetic algorithm.

4.1. Benchmarking function comparison. In this section, two common optimization
benchmark functions, namely, Ackley [11-13] and Griewank [11,14-16] are used to compare
performance against our proposed method and the P-transformation algorithm.

These functions were modified to find the global extremum instead of minimum. We
test these two modified functions for 2, 3, 4, 5, 10 and 20 dimensions around the range
[−50, 50]. Both functions were modified using the following Equation (11)

Fmodified = F (n) − Original function (11)

where n is the number of variables and Fmodified is the modified objective function and
F (n) = 10n.



ICIC EXPRESS LETTERS, VOL.12, NO.10, 2018 995

The Ackley function and the Griewank function are widely used for testing optimization
algorithms and are defined by Equations (12) and (13) respectively:

f(x) = −a exp

−b

√√√√1

d

d∑
i=1

x2
i

− exp

(
1

d

d∑
i=1

cos(cxi)

)
+ a + exp(1) (12)

f(x) = 1 +
1

4000

n∑
i=1

x2
i −

n∏
i=1

cos

(
xi√

i

)
(13)

A comparison of run time results for both modified test functions using the P-transforma-
tion and the improved P-transformation is shown in Table 1.

Table 1. Run time comparison of benchmark functions

ACKLEY’s
Function
Dimension

P-transformation
Run Time (sec)

Improved
P-transformation
Run Time (sec)

2 0.290092 0.347802
3 0.536712 0.349026
4 0.382913 0.366289
5 0.682426 0.384799
10 2.091991 0.472864
20 5.8230353 0.334182

GRIEWANK’s
Function
Dimension

P-transformation
Run Time (sec)

Improved
P-transformation
Run Time (sec)

2 0.386757 0.378616
3 0.423401 0.405351
4 0.437406 0.437406
5 0.64111 0.45576
10 0.682507 0.661191
20 1.613999 1.51644

The information above is also depicted in a graphical format as shown in Figures 4 and
5 for the Ackley and Griewanck functions respectively.

As shown on the graph and the table, the run time is improved, particularly for higher
dimensions using the improved method as proposed in this paper.

4.2. Double inverted pendulum application results. In this section, we demon-
strate the application of our proposed method to an inverted double pendulum example
on a cart that can move horizontally as shown in Figure 6. The goal is to balance the two
sticks in the vertical position by applying a horizontal force to the cart. This is a highly
nonlinear problem, which is linearized for this application. This problem is taken from
the CADSI/DADS Linear (currently LMS Motion) example handbook [17].

Let x0 be defined such that both sticks are initially vertical and at rest and the cart
starts off with zero displacement and is also at rest while xc represents the cart position.
The linear quadratic regulator control method is used to design the controller and is given
by

J =
1

2

∫ ∝

0

(
δx(t)TQδx(t) + δu(t)TRδu(t)

)
dt (14)

In the above equation, x is the system state vector for positions and velocities, u is the
system input vector or force and Q and R are the weighting matrices. For this example, Q
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Figure 4. Graphical representation of run time results for Ackley function

Figure 5. Graphical representation of run time results for Griewank function

Figure 6. Inverted double pendulum example
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is a 6×6 identity matrix and R is a unit scalar vector. Also, δ represents the linearization
of the state vectors for the initial condition x0.

The objective of the problem is to minimize the cost function J resulting in an input u
in terms of the states that keep the sticks vertical. It should be noted that

δu = −Kδx (15)

where K is the gain matrix. By varying the gain K, the cost function J can be minimized.
Without going into the derivation of the motion equations, the linearized equations for

the A and B state matrices are taken as indicated in the LMS DADS reference manual
and are given by

A =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

4.999 −4.292 0 0 0 0
−6.66 15.51 0 0 0 0
1.867 −0.2325 0 0 0 0

 , B =


0
0
0

0.5048
−0.6726
1.179

 (16)

C =


1
0
0
0
0
0

 , D = [0] (17)

The state space model is given by

Ẋ = Ax + Bu (18)

Y = Cx + Du (19)

where,

Ẋ =


δθ̇1

δθ̇2

δẋc

δθ̈1

δθ̈2

δẍc

 , x = δx =


δθ1

δθ2

δxc

δθ̇1

δθ̇2

δẋc

 , u = δu = 0 (20)

In the above equation, xc represents the position of the cart and θi represents the angles
with the vertical line of each stick.

The optimization problem is posed as follows:
Minimize

0.25
√∑

(x2 + (−Kx)2) (21)

Subject to
real(sort(eigen(A − KB))) + 0.2 (22)

where the design variable is the gain K and its bounds are given by
−100
−200

0
−100
−100

5

 ≤ K ≤


10
10
5
5
1
10

 (23)

The MATLAB/SIMULINK state space approach was utilized to solve the problem with
the genetic algorithm, the P-transformation, and the improved P-transformation.
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Figure 7. Inverted double pendulum states convergence and position vs velocity

A duration of 25 seconds was used for the simulation. The initial velocity for stick 1
was 0.1 with all others as 0. Figure 7 represents the convergence of the states in time and
the comparison between position vs velocity.

The optimized values for the gain K using the improved P-transformation method are

K = [−78.76 − 148.74 1.91 − 54.05 − 29.3 8.46]

The optimization was run on an 8 core Xeon server with 24Gb RAM. The times utilized
in the optimization for the P-transformation, the improved P-transformation, and the
genetic algorithm are compared in Table 2.

Table 2. Analysis time comparison

Method Time (sec)
Improved P-transformation 181.02

P-transformation 187.05
Genetic Algorithm 1284.28

We can observe from Table 2 that our proposed algorithm performed the best.

5. Conclusions. We have presented the improved P-transformation as an efficient meth-
od for global optimization. The examples presented in this paper demonstrate that our
proposed algorithm gives better and more efficient results both for the benchmarking
functions and a difficult constrained control engineering application for balancing a double
pendulum.
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The P-transformation is applicable to a wide variety of optimization problems such as:
Mixed Integer Nonlinear Problems (MINLP) and cases where the objective functions are
absent. There are possibilities that the P-transformation can be utilized hybridly with
other global optimization algorithms to expedite computation.
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