
ICIC Express Letters ICIC International c⃝2018 ISSN 1881-803X
Volume 12, Number 10, October 2018 pp. 1009–1016

AN APPROACH TO DEFINING AND IDENTIFYING LOGGING
SYSTEM PATTERNS FOR INFRASTRUCTURE

AS A SERVICE CLOUD

Winai Wongthai1,2,∗ and Aad van Moorsel3

1Department of Computer Science and Information Technology
2Research Center for Academic Excellence in Nonlinear Analysis and Optimization

Faculty of Science
Naresuan University

Phitsanulok 65000, Thailand
∗Corresponding author: winaiw@nu.ac.th

3School of Computing Science
Newcastle University

Newcastle upon Tyne, NE1 7RU, United Kingdom

Received March 2018; accepted June 2018

Abstract. Accountability is one of the keys to the mitigation of risks associated with
cloud security. A logging system is an important feature in accountability solutions to
anticipate and handle threats in the cloud. However, previous accountability with logging
system solutions have been provided without any description of the logging system in the
context of a design pattern of the system’s components. There are a number of benefits in
applying the design steps for patterns customized from the object-oriented software design
and development area. Stating a design pattern of the logging system’s components also
facilitates the analysis of a logging system in terms of, for example, their quality or char-
acteristics. This can minimize the effort and time commitment necessary for a system’s
design and development. However, to define and identify a pattern needs appropriate
approach, which this paper provides. To the best of our knowledge, the approach has not
previously been described in the literature.
Keywords: Accountability, Logging system architecture, Logging system pattern, Defin-
ing and identifying a pattern

1. Introduction. The cloud is useful in many application areas such as in eduction [1].
Leitersdorf and Schreiber [2] state that cloud security is one of five major cybersecurity
market trends which will define the cybersecurity budgets of firms for 2015. The Top
Threats to Cloud Computing Report [3] by Cloud Security Alliance (CSA) provides ex-
amples of threats to cloud security. Accountability can be key to mitigating the risk of
these threats. Many researchers [4, 5, 6, 7] have argued, in relation to cloud security, that
cloud behaviors are open to inspection by any party for both legitimate or illegitimate
purposes. [8, 9, 10, 11, 12] argue that a logging system is an important feature in account-
ability solutions to assist in dealing with these problems and threats. [12] also states that
a logging system is composed of logging processes which focus on logging-related tasks
together with log files used to store contents produced by these processes.

However, previous accountability with logging systems solutions [8, 12, 13, 14, 15, 16, 17,
18, 19, 20] have been provided system architectures for the specific logging system without
any description of the design pattern upon which the system’s components are based. We
have identified something in the order of 90 or more such architectures. We have also
identified common components within this variety of system architectures, leading us
to develop a pattern-based approach to logging system design. The Infrastructure as a

DOI: 10.24507/icicel.12.10.1009

1009



1010 W. WONGTHAI AND A. VAN MOORSEL

Service (IaaS) cloud environment is complex and complicated and each developer designs
their architecture without any example or standard to emulate; there are none. Thus, this
paper proposes pattern definitions with structures based on those now widely accepted in
the object-oriented (OO) development environment. We state 6 activities to be used as
tools to identify appropriate patterns. Following this, we will state and publish at a later
time, a set of patterns structured according to these definitions.

Summary of contributions. The first contribution is a discussion of the need for
defining and identifying logging system patterns for logging system design in the IaaS
context, together with an associated development environment. The second contribution
we are making is a statement of an approach to the definition and identification of the
proposed logging system patterns. We believe that our approach can be used to identify
and state usable and useful patterns for logging system design and development in the IaaS
context. This is our future work. Thus, the proposed approach can result in appropriate
and well-defined patterns which can provide guidance and standardization in the context.
This is because the approach was systematically proposed based on well-known design
patterns in OO software design and development. For example, attributes or formats
of an OO pattern were applied to the approach (more details in Sections 2.3 and 3).
Moreover, the approach was systematically proposed based on our own 8 year experience
of building logging systems particularly in IaaS cloud environment (more details in Section
3.3).

A further advantage envisaged is that the patterns can be used not only to describe
any particular logging system, in ‘standard’ terms, but also to compare different logging
systems for their similarities and differences in their characteristics, components and func-
tionality. This can be taken to the further step of identifying the absence of properties
considered essential or necessary, and the advantages and disadvantages of the particular
system. By applying the standards, the quality of the system can be more easily assessed.
This will facilitate the design and development of logging systems, and minimize the effort
and time commitment required for system design and development.

The remainder of this paper is as follows. Section 2 discusses IaaS architecture, generic
logging components of IaaS cloud and the needs for defining and identifying logging system
patterns for IaaS. Section 3 provides the approach to defining and identifying logging
system patterns for IaaS Cloud. This includes discussions of design patterns in general
and in object-oriented software design, then of defining a pattern in logging system design
and development environment, and of the activities to identify patterns for logging system
design and development. Finally, Section 4 provides a summary and future research
directions.

2. Background. This section provides the background information for understanding
our concept and approach. We discuss IaaS architecture, generic logging components of
IaaS cloud, and the need for defining and identifying logging system patterns for IaaS.

2.1. IaaS architecture. Figure 1 illustrates the architecture of an IaaS public cloud
configuration, which comes from our previous work [12]. The provider side is any organi-
zation that publicly offers virtual machines or VMs to the customer. The customer can
rent the VMs and access them via the Internet. A hypervisor is a software that enables
one computer to have more than one VM. The dom0 is a privileged domain VM that
is launched by the hypervisor during system boot, where 0 indicates that this VM is
physically managed and owned by the provider. The dom0 directly accesses the hardware
(hw) and manages multiple domUs. A domU is an unprivileged domain VM that runs
on top of the hypervisor, U indicates that this VM is virtually managed and owned by a
customer. A domU is a VM and IaaS product.



ICIC EXPRESS LETTERS, VOL.12, NO.10, 2018 1011

Figure 1. The IaaS architecture

Figure 2. The overall view of generic logging components: logging process
or Px (P1 to P5), and log files or Fy (F1 to F4)

2.2. Generic logging components of IaaS cloud. To describe the approach to defin-
ing and identifying logging system patterns for IaaS cloud configurations that exploits the
generic logging components of an IaaS cloud configuration, needs an understanding of the
definition of those generic components. [8], our previous work, provides information on
these generic logging components, which we illustrate in Figure 2.

This current paper further discusses these components which we group under two head-
ings or as two sets, (1) IaaS components and (2) critical components.

The first set of IaaS components is shown as white boxes in Figure 2. This set includes
the hypervisor, dom0, domU, hw0, hwU, disk0, diskU, mem0, memU, app0, and appU.
The first four components have already been discussed above. (Note that hw0 is hw in the
previous dicsussion.) HwU is domU’s hardware and physically located inside hw0 (which
is owned by dom0) although it is virtually owned by domU. Disk0 is a physical disk of
the hw0, and diskU is a virtual disk of a domU. Mem0 is the main memory of the hw0,
and memU is the virtual main memory of domU. App0 is an application that runs inside
dom0 and similarly appU is the application that runs the domU user level.

The elements of the second set are the critical components in the logging processes (Px,
x = 1, 2, 3, 4, 5) and log file components (Fy, y = 1, 2, 3, 4) (shaded boxes). The logging
processes P1 to P5 perform logging-related tasks, and the log files F1 to F4 are used for
storing the data produced by P1 to P5. Full details of P1 and P2 and P3 to P5 were fully
described in our previous publications [8, 12].



1012 W. WONGTHAI AND A. VAN MOORSEL

All the generic logging components, including and especially the critical components,
will be referred to in the following sections in this paper in our descriptions of our approach
to defining and identifying logging system patterns for IaaS.

2.3. The needs for defining and identifying logging system patterns for IaaS.
Gamma et al. [21] discuss a number of benefits of design patterns, stating that “design
patterns make it easier to reuse successful designs and architectures”. By expressing
proven techniques as design patterns makes them more accessible to developers of new
systems and enables correct designs to be immediately produced. Design patterns help
developers choose design alternatives promoting system and component reusability. As
well, design patterns can improve documentation correctness and standardisation and
reduce the maintenance cost and effort of existing systems by furnishing an explicit spec-
ification of class and object interactions and their underlying intent. “Put simply, design
patterns help a designer get a design right faster”.

It is suggested here that design patterns in the logging context can bring the same ben-
efits as enthusiastically discussed by Gamma et al., particularly promoting the reusability
of designs and standardizing of the development of logging systems. Our ultimate inten-
tion is to provide logging design patterns and to make them more accessible to developers
of new logging systems. This enables these designers to better choose between design
alternatives of logging systems. Moreover, the designers can have other benefits of stan-
dard, and complete, documentation and support for the on-going maintenance function
of the development of logging systems.

Our design patterns will provide explicit specifications of the critical logging components
(Px and Fy) with their locations in any IaaS infrastructure and describe the underlying
intent of each component, especially the logging processes or P1 to P5 and log files or F1
to F4 which are the critical components of any logging system. Our perceived outcome is
“building correct systems faster, the first time”.

Learning from the object-oriented area, design patterns have also been applied in other
environments [22]. This extension of the concept and use of design patterns encouraged
our work to apply the design pattern concept to logging systems’ design and development
in IaaS as well, which we elaborate in the next section.

3. The Approach to Defining and Identifying Logging System Patterns for
IaaS Cloud. The previous section discussed the need for defining and identifying logging
system patterns for IaaS. This section discusses our approach to defining and identifying
these logging system patterns. This approach has three steps which are discussed below
in sub-sections 3.1 to 3.3. The first step was to identify and define the general concept
of design patterns, and more specifically as they are known in object-oriented software
design. We then consider our view of the well-found linkage between object-oriented
software design patterns and the application of the concepts in logging system design
and development, which is the second step described in sub-section 3.2. Finally, Step 3,
elaborated in sub-section 3.3 includes the six activities to be used as tools to identify the
patterns for logging system design and development in IaaS.

3.1. Design patterns in general and in object-oriented software design. A design
pattern is generally described in [22] as “a documented best practice or core of a solu-
tion that has been applied successfully in multiple environments to solve a problem that
recurs in a specific set of situations”. Based on simple and elegant solutions to specific
problems, a significant number of design patterns for object-oriented software design were
created and published by [21]. Specific design patterns were also discussed in [23] and
termed software design patterns, and defined as: descriptions of communicating objects
and classes that are customized to solve a general design problem in a particular context.
[22] states that patterns typically have the attributes of Name, Purpose, Description of



ICIC EXPRESS LETTERS, VOL.12, NO.10, 2018 1013

when and why to apply the pattern, Structural diagrams, Examples of use, and Discussion
of interactions with other patterns.

3.2. Defining a pattern in logging system design and development environ-
ment. This section discusses what we consider to be a well-founded linkage between
patterns in object-oriented software design and in logging design and development. For
simplicity, we refer to a design pattern for logging system design and development in
IaaS simply as a ‘pattern’. In this sub-section we will define the definition of a pattern
based on well-known design patterns in object-oriented software design and development
created by Gamma et al. [21], whose definition of design patterns, as previously cited, is:
descriptions of communicating objects and classes that are customized to solve a
general design problem in a particular context.

For further discussions, and based on the generic logging components, our general
definition pattern in logging system design and development environment is: descriptions
of participating critical components (Px and Fy) and their locations that are
customized (the components can be appropriately located in IaaS components
including domU, dom0, and hypervisor) to solve a general design problem in a
particular context. Note that participating critical components are Px and Fy that are
used to form a logging system. From the generic logging components in Figure 2, the
logging processes P1 to P5 and log files F1 to F4 are critical components of a logging
system.

We believe that our patterns can be defined based on the definition discussed above.
For example, Figure 3 is an architecture of a logging system. Based on our experience
in involving a prototype of logging systems in [8, 9, 10, 12, 13] (as will be discussed in
Section 3.3), this architecture is only one of many possible logging system architectures.

Figure 3. A logging system architecture deploying P1, F3, and F4

The patterns can be used as a blueprint to create a concrete software architecture
before building the software. In the logging system context, a concrete logging system
architecture, which can be any one of those possible logging system architectures men-
tioned above, can be derived from a pattern as well. The created patterns can then be
used as tools to describe and model a logging system and to compare between logging
system models in terms of the systems’ characteristics and advantages and disadvantages.
This should facilitate the design and development of the systems.

3.3. The activities to identify patterns for logging system design and develop-
ment. This section discusses six activities to be undertaken to identify the patterns. Heer
and Agrawala [23] identify software design patterns for information visualization based



1014 W. WONGTHAI AND A. VAN MOORSEL

upon a review of existing frameworks and their own experiences building visualization
software. We have followed their approach for our purposes. In our future work we will
also identify specific patterns for IaaS logging environments based on our own experience
of building logging systems particularly.

The first activity was to base the patterns on our own experience, that is, a retrospective
analysis of our ‘experience’ from which Figure 2 is derived, showing the generic logging
components identified by us. We are leveraging on our own experience in building a
prototype of logging systems. We also draw on the spamming case study from [12]. For
mitigating risks associated with threats of malicious activities performed in consumers’
virtual machines/VMs which can affect the security of both consumers and providers
we cite [13] and we have followed the discussion in [11]. Other experiences involve many
aspects of logging systems such as the systems’ performance [9, 10], especially the systems’
quality [8], all of which gave us better understanding of logging systems in terms of the
variety of architectures and the perceived and measurable quality of the various logging
systems.

The second activity was to investigate and evaluate all possible forms of distribution
of Px and Fy to form a logging system architecture, into either or both the customer side
structure and the provider side structure.

Then we investigated and evaluated the distributions of Px and Fy in system architec-
tures of the related work concerning logging systems, as the third activity in this pattern
development process.

The fourth activity was to define the meaning and purpose of the logging data. The
common abilities of logging systems to capture and store necessary logging data, will
be expressed in the patterns we will define. We define the meaning and purpose of this
logging data as, first, illustrating and recording the behavior or activities of a process or
processes in domU Examples of which are discussed in [12] (the spamming case study).
Alternatively, we consider the necessity of the data record of the domU files’ life cycles.
Examples and discussion of a domU file’s life cycle from creation, through accessing and
updating, and ultimately destruction of the files, are found in [14, 16].

The fifth activity is the identification of a pattern which is based on the idea that
we need a logging system that can be developed within the shortest time possible and
with minimal efforts. Simplicity and cost are two factors of importance in this regard.
Secondly, the pattern must be designed in such a way as to ensure the reliability of Px
and Fy, and includes the system’s ability to facilitate the self-enforcement of its internal
security policies. Last, but equally important, is the capability of capturing as much of the
necessary logging data as possible, primarily as evidentiary data in any legal proceedings
that may eventuate.

In the object-oriented software development area, authors in [21] describe their well-
known design patterns using a consistent format. The final activity in our process is to
emulate this approach in describing our patterns. The elements of the format of patterns
described in [21] are: pattern name, intent, motivation, applicability, structure, partici-
pants, collaborations, consequences, implementation, known uses, and related patterns.
Using this format for our patterns results in a clear and complete description of any
pattern.

These six activities in the process of developing the patterns will result in useful and
applicable logging system patterns for the IaaS environment, bringing with it an essential
level of standardization, and understanding. In following this process, and carrying out
these activities fully and in order, we believe that we can identify appropriate patterns
for logging system design and development. The actual development of these patterns
will be the subject of our future work.



ICIC EXPRESS LETTERS, VOL.12, NO.10, 2018 1015

4. Conclusions. There are a number of benefits of this pattern based approach which
will deliver the same benefits for logging system design as have been experienced in object-
oriented software design and development. To achieve these benefits, this paper discusses
the need for defining and identifying logging system patterns, and describes an approach
to defining and identifying these logging system patterns, as an essential precursor to the
actual definition of the patterns. We have drawn on what we might term the Reference
Discipline of the pattern-based approach to object-oriented software design, and our own
experience in developing logging systems in the IaaS environment.

We are confident that this approach can result in appropriate and well-defined patterns
which can provide guidance and standardization for the future development of propriety
logging systems, and the basis for analyzing the completeness of any such system. It
will further provide the ability to analyze and identify the advantages and disadvantages
inherent in any particular logging system design. This is our future work.

Acknowledgment. Many thanks to Mr. Roy Morien of the Naresuan University Lan-
guage Centre for his editing assistance and advice on English expression in this document.

REFERENCES

[1] W. Runathong, W. Wongthai and S. Panithansuwan, A system for classroom environment monitoring
using the Internet of things and cloud computing, in Information Science and Applications 2017.
Lecture Notes in Electrical Engineering, K. Kim and N. Joukov (eds.), vol.424, pp.732-742, 2017.

[2] Y. Leitersdorf and O. Schreiber, Cybersecurity hindsight and a look ahead at 2015, http://
techcrunch.com/2014/12/28/cyber-security-hindsight-2020-and-a-look-ahead-at-2015/, 2014.

[3] CSA, The notorious nine: Cloud computing top threats in 2013, Tech. Rep., The Cloud Security
Alliance (CSA), 2013.

[4] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson,
A. Rabkin, I. Stoica and M. Zaharia, A view of cloud computing, Communications of the ACM,
vol.53, no.4, pp.50-58, 2010.

[5] A. Haeberlen, A case for the accountable cloud, SIGOPS Oper. Syst. Rev., vol.44, no.2, pp.52-57,
2010.

[6] N. Santos, K. P. Gummadi and R. Rodrigues, Towards trusted cloud computing, Proc. of the 2009
Conference on Hot topics in Cloud Computing, 2009.

[7] J. Lyle and A. Martin, Trusted computing and provenance: Better together, Proc. of the 2nd Con-
ference on Theory and Practice of Provenance, 2010.

[8] W. Wongthai and A. van Moorsel, Quality analysis of logging system components in the cloud,
Lecture Notes in Electrical Engineering, 2016.

[9] W. Wongthai and A. van Moorsel, Performance measurement of logging systems in infrastructure
as a service cloud, ICIC Express Letters, vol.10, no.2, pp.347-354, 2016.

[10] P. Chan-In and W. Wongthai, Performance improvement considerations of cloud logging systems,
ICIC Express Letters, vol.11, no.1, pp.37-43, 2017.

[11] P Chan-In and W Wongthai, Logging solutions to mitigate risks associated with security issues in
platform as a service cloud models, Information (Japan), 2016.

[12] W. Wongthai, F. L. Rocha and A. van Moorsel, A generic logging template for Infrastructure as a
Service cloud, Proc. of the 27th International Conference on Advanced Information Networking and
Applications Workshops, 2013.

[13] W. Wongthai, F. Rocha and A. van Moorsel, Logging solutions to mitigate risks associated with
threats in infrastructure as a service cloud, Proc. of the 2013 International Conference on Cloud
Computing and Big Data, 2013.

[14] R. K. Ko, P. Jagadpramana, M. Mowbray, S. Pearson, M. Kirchberg, Q. Liang and B. S. Lee, Trust-
cloud: A framework for accountability and trust in cloud computing, IEEE Congress on Services,
pp.584-588, 2011.

[15] A. Haeberlen, P. Aditya, R. Rodrigues and P. Druschel, Accountable virtual machines, Proc. of the
9th USENIX Conference on Operating Systems Design and Implementation, 2010.

[16] P. Macko, M. Chiarini and M. Seltzer, Collecting provenance via the Xen hypervisor, The 3rd
Workshop on the Theory and Practice of Provenance, 2011.

[17] B. Dolan-Gavitt, B. Payne and W. Lee, Leveraging forensic tools for virtual machine introspection,
Tech. Rep., Georgia Institute of Technology, 2011.



1016 W. WONGTHAI AND A. VAN MOORSEL

[18] B. Payne, M. de Carbone and W. Lee, Secure and flexible monitoring of virtual machines, Annual
Computer Security Applications Conference, 2007.

[19] B. Payne, M. Carbone, M. Sharif and W. Lee, Lares: An architecture for secure active monitoring
using virtualization, IEEE Symposium on Security and Privacy, 2008.

[20] S. Sundareswaran, A. C. Squicciarini and D. Lin, Ensuring distributed accountability for data sharing
in the cloud, IEEE Trans. Dependable and Secure Computing, 2012.

[21] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley Professional, 1994.

[22] P. Kuchana, Software Architecture Design Patterns in Java, Auerbach Publications, Boston, MA,
USA, 2004.

[23] J. Heer and M. Agrawala, Software design patterns for information visualization, IEEE Trans. Vi-
sualization and Computer Graphics, 2006.


