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Abstract. In this paper, a fuzzy modeling method combined with marginal linearization
and ensemble learning is proposed. Firstly, fuzzy classifier method is applied to obtaining
the partition of domains and to establishing fuzzy rules. Then fuzzy marginal linearization
modeling (FMLM) method is utilized to deduce the mathematical representation of fuzzy
system. By choosing different membership functions of input variables, several fuzzy
models with different structures can be designed. Further, ensemble learning method is
considered to build comprehensive model. Some numerical examples are provided to show
the validity of the proposed method.
Keywords: Fuzzy system, Fuzzy inference modeling, Marginal linearization method

1. Introduction. It is well known that fuzzy modeling technology can effectively handle
human knowledge and data information, and can establish mathematical models for some
complex systems. During the past few decades, fuzzy systems are proved to have universal
approximation capabilities for nonlinear system. Accordingly, various fuzzy modeling
methods have been proposed and widely applied in regression [1] and prediction [2].

The mathematical mechanism of fuzzy modeling is to obtain the relationship between
the input variable and output variable. Different from some traditional machine learning
methods, fuzzy modeling technology can handle not only historical numerical data but
also priori information from experts. In [3], Mamdani fuzzy systems are designed to be
universal approximators for nonlinear functions. In [4], the approximation capabilities of
TS fuzzy systems are discussed. In some applications, people hope that fuzzy systems
possess smooth approximation property. That is to say that fuzzy system can approximate
both the original function and its derivate function. To solve this problem, in [5], fuzzy
systems determined by some polynomial functions are provided.

Besides, in order to facilitate theoretical analysis, some linearization treatments are
considered to improve fuzzy systems. In [6], fuzzy marginal linearization technology is
proposed. The basic idea of this method is to let some fuzzy membership functions in
fuzzy rules be rectangle functions and others be triangular functions. As thus, fuzzy
system can transfer expert’s knowledge and observed data into mathematical model with
piecewise linear form models or piecewise nonlinear structure models which can be suitable
for different model analyzing problem.

From existing results, we can find that fuzzy modeling technology is an effective tool for
handling both qualitative knowledge and quantitative information. However, in practical
application, when the objective system exhibits complexity and nonlinearity, a single fuzzy
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model may not reflect the whole characteristic of the system. Hence, how to synthesize
several fuzzy models to express complicated system is an interesting problem. Motivated
by aforementioned fact, in this paper, an ensemble learning scheme is applied in designing
fuzzy system. By marginal linearization method, empirical and numerical information
can be transferred into some kind of mathematical sub-models with different structures.
Ensemble learning method is considered to establish an integrated model with several
sub-models for solving modeling issue.

This paper is organized as follows. In Section 2, some preliminary knowledge of fuzzy
modeling technology is introduced. In Section 3, a kind of fuzzy modeling method com-
bining marginal linearization and ensemble learning is designed. In Section 4, some nu-
merical examples are considered to demonstrate the validity of the proposed method.
Finally, some conclusions are summarized in Section 5.

2. Preliminaries of Fuzzy Modeling Method. In this section, we will introduce some
basic notations and some preliminaries of FMLM method.

We take an n-input and single output system as an example to introduce FMLM
method. The input universe is X1 × · · · × Xn and the output universe is Y , where
(x1, . . . , xn) ∈ X1 × · · · × Xn is the input variable and y ∈ Y is the output variable.
Consider a group of input-output samples (x1j1 , . . . , xnjn , yj1...jn), where jk = 1, . . . , pk,
k = 1, . . . , n.

In order to simplify the numbers of fuzzy rules, we utilize fuzzy C-means (FCM) method
to divide these observed samples into several classifiers. Corresponding to clustering
prototypes, we can get a series sub-regions of the input domain, which can be denoted
by (i1, . . . , in) =

[
x1i1 , x1(i1+1)

)
× · · · ×

[
xnin , xn(in+1)

)
, where ik = 1, . . . , qk, qk ≤ pk and

k = 1, . . . , n. Based on these partition points of sub-regions and the clustering centers, a
group of fuzzy rules can be established as below,

If x1 is A1i1 and x2 is A2i2 and · · · and xn is Anin then y is Bi1...in , (1)

where Akik is the fuzzy set of universe Xk and Bi1...in is the fuzzy set of universe Y .
Then, we will use FMLM and fuzzy rules (1) to deduce mathematical representation of

the fuzzy system.
First, in each phase of modeling, we only let one premise fuzzy set of fuzzy rules be

triangular membership function and let the other input fuzzy sets be rectangle-shaped
membership function. Accordingly, we can use fuzzy inference modeling method to obtain
the output of this model, which can be denoted by fk,

fk(x1, . . . , xn) =

q1∑
i1=1

· · ·
qn∑

in=1

(
Akik(xk) · yi1...in + Ak(ik+1)(xk) · y(i1+1)...(in+1)

)
.

Then, we take the average sum of fk (k = 1, . . . , n). Hence the fuzzy system with
piecewise linearization structure can be represented by

f(x1, . . . , xn) =
1

n
·

q1∑
i1=1

· · ·
qn∑

in=1

(
n∑

k=1

(
Akik(xk) · yi1...in + Ak(ik+1)(xk) · y(i1+1)...(in+1)

))
.

(2)
Similarly, if two fuzzy sets of input dimensions in each process are denoted by trian-

gular membership functions and the other fuzzy sets are rectangle-shaped membership
functions, then we can obtain a fuzzy system with bilinear structure.

Particularly, if all the membership functions of input variables are chosen as triangular
membership functions, then the fuzzy system can be represented by the so-called Mamdani
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fuzzy system, i.e.,

f(x1, . . . , xn) =

q1∑
i1=1

· · ·
qn∑

in=1

(
n∏

k=1

Akik(xk) · yi1...in

)
.

As described above, we utilize FMLM method to generate a series of fuzzy systems with
different structures. And the famous Mamdani fuzzy system can be seen as a particular
case of FMLM method.

3. Fuzzy Modeling Method Combined with Marginal Linearization and En-
semble Learning. In this section, we will investigate the usage of FMLM and ensemble
learning technique to solve time series forecasting problem.

The basic structure of the proposed fuzzy modeling method is shown in Figure 1. The
designed model includes two stages. The first stage is to use FMLM to obtain several
sub-models with different structures. The second stage is to ensemble outputs of every
sub-model and to get the final result of the entire model.

Figure 1. The basic structure of ensemble fuzzy modeling method

In the following, we will present the detailed process of this method.
Consider a time series: {y(t), t = 1, 2, . . .}. Without loss of generality, we take a dth-

order time series as example to introduce the proposed procedure. In fact, a group of
observed samples {(y(t−d+1), . . . , y(t), y(t+1)), t = d, d+1, . . .} can be extracted from
the original series, where (y(t− d+1), . . . , y(t)) is seen as the input variable, and y(t+1)
is the output variable hereinafter.

Firstly, FCM method is considered to divide the observed samples into K classifiers.
For each classifier, we take the cluster center as the peak point of fuzzy set, and take

the minimum value and maximum value of this classifier as the left point and right point
of corresponding fuzzy set respectively. Accordingly, we can establish a group of fuzzy
rules as:

If y(t − d + 1) is A1i and · · · and y(t) is Adi then y(t + 1) is Bi, (3)

where i = 1, . . . , K.
As depicted in Equation (2), by FMLM we can obtain a fuzzy system with piecewise

linear structure as follows,

y(1)(t + 1) = f1(y(t − d + 1), . . . , y(t))

=
K∑

i=1

1

d

(
d∑

j=1

(
Aji(y(t − d + j)) · yi + Aj(i+1)(y(t − d + j)) · yi+1

))
,

where yi is the peak point of fuzzy set Bi.
Similarly, based on fuzzy rules (3) with different membership functions, we can also

determine other forms of sub-models denoted by fl (l = 2, . . . , n).
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Then, we will synthesize outputs of all the sub-models together. In this paper, two
kinds of error based weights are considered in the ensemble learning stage [7,8]. They are
defined as follows.

(1) Constant weights:

wl =
1/Errl

n∑
l=1

1/Errl

,

where Errl is a kind of performance evaluation index of sub-model l for the training
sample set.

For instance, Errl can be settled as,

Errl =
1

N

N∑
t=1

(
y(t) − y(l)(t)

)2
,

where N is the number of training data, and y(t) and y(l)(t) are the desired output and
the calculated output from the lth sub-model at time t. This Errl is derived from the
common used mean squared errors (MSE) accuracy index, and other types of Errl can
be similarly defined.

(2) Variable weights:

wl(t + 1) =
1/Errl(t)

n∑
l=1

1/Errl(t)
,

where Errl(t) is the error of time t for sub-model l. In application, it can be designed as

Errl(t) =
(
y(t) − y(l)(t)

)2
or other forms.

Obviously, for whether static weight or dynamic weight, a sub-model with more error
receives less weight and vice versa. Hence, we can respectively compute the final output
ŷ(t + 1) by the constant weights or variable weights:

ŷ(t + 1) =
n∑

l=1

wl · y(l)(t + 1) =
n∑

l=1

wl · fl(y(t − d + 1), . . . , y(t)),

ŷ(t + 1) =
n∑

l=1

wl(t + 1) · y(l)(t + 1) =
n∑

l=1

wl(t + 1) · fl(y(t − d + 1), . . . , y(t)).

In this way, we establish a fuzzy model by FMLM method and ensemble learning
technique. The primary implementation steps of the proposed fuzzy modeling method
are summarized as listed following.

Step 1. Use acquired knowledge and data information to classify samples.
Step 2. Determine partition points of input domains and output domains based on

clustering results.
Step 3. Establish fuzzy membership functions of input variables and output variables

and obtain fuzzy rule bases.
Step 4. With different shape of membership functions, use fuzzy marginal linearization

method to deduce expressions of every sub-model.
Step 5. Take advantage of ensemble learning algorithm to integrate outputs of all the

sub-models.

4. Empirical Results. In this section, two datasets are provided to demonstrate the
forecasting performance of the proposed method for time series.

Example 4.1. Prediction of nonlinear dynamic system [9].
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This example is defined by the following nonlinear difference equation:

y(t + 1) =
y(t)y(t − 1)[y(t) + 2.5]

1 + y2(t) + y2(t − 1)
+ u(t),

where y(0) = 0, y(1) = 0 and u(t) = sin(2πt/25). It can been seen as a three-input
single-output model, i.e., y(t+1) = f(y(t− 1), y(t), u(t)). In order to compare with some
literature, firstly 200 data sets are chosen as training data, while the other 200 data are
chosen as testing data.

For the proposed method, the number of clusters is set to be 2, and 2 sub-models are
applied in this simulation. One of the sub-models has piecewise linear form, and the
other one has the piecewise quadratic bilinear structure. Hence, there are 4 rules and
30 parameters in the ensemble model in total. The root mean squared error (RMSE)
comparisons for training set and testing set are listed in Table 1 and Table 2 respectively.

Table 1. Comparison between the proposed method and other algorithms
for training set

Method No. of rules No. of parameters RMSE
OLS [10] 65 326 0.0288

RBFAFS [11] 35 280 0.1384
DFNN [12] 6 48 0.0283

GDFNN [13] 6 48 0.0241
Proposed method 4 30 0.0014

Table 2. Comparison between the proposed method and other algorithms
for testing set

Method No. of rules No. of parameters RMSE
Farag’s model [14] 75 48 0.201

SOFNN [15] 5 46 0.0151
SOFNN-GA [9] 4 34 0.0146

SOFNN-GAPSO [9] 4 34 0.0141
Proposed method 4 30 0.0014

In fact, in the process of training two sub-models based on marginal linearization
method already have good results. RMSE of simple arithmetic average between afore-
mentioned linear sub-model and the other quadratic sub-models is 0.0125. With error
based ensemble strategy, we can get the improved performance. If the number of clusters
is set to be 3, then the RMSE of testing set can be dramatically reduced to 7.8811e-12,
where the number of estimated parameters is only 44.

We have also compared prediction accuracy of the proposed method to other references.
While 500 data sets are chosen as training data, and the other 500 data are chosen as the
testing data, then the results of the MSE are presented in Table 3.

Table 3. Comparison between proposed method and other algorithms (MSE)

Method No. of rules No. of parameters
MSE

Training data Testing data
Bagis [16] 4 104 0.0341 0.0378

Li et al. [17] 4 40 0.0149 0.0115
Li et al. [18] 4 40 0.0102 0.0128

Proposed method 4 30 0.0002 0.0002
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Example 4.2. Prediction of river flow time series.

This time series contains the monthly flow of the clear water river at Kamiah, Idaho,
USA from 1911 to 1965. And the first 500 data are used as training set while the last 100
data are chosen as the testing set. The raw series is available at http://DataMarket.com.

In the simulation, 3 clusters are chosen to set up a third order lag model for prediction.
The forms of sub-models are the same as in the previous example. If static weights are
adopted, which are determined by the overall error of the training set for each sub-model,
the mean absolute error (MAE) and the MSE of testing set are shown in Table 4. When
dynamic weights are applied, the MAE and the MSE can be improved further, which
means that for each time, its ensemble weights of sub-models are calculated according to
the error of the first order time delay output in the ensemble algorithm.

Table 4. Comparison between the proposed method and other algorithms
for river flow testing set

Error
Individual models Combination methods

measures

FANN [21] EANN [20]
Avg. of

[19]
FANN&EANN

MAE 0.66 1.036 0.751 0.638
MSE 1.217 2.19 1.158 0.978

Individual models Combination methods
Sub-model 1 Sub-model 2 Static Weights Dynamic Weights

MAE 0.1466 0.1404 0.1398 0.1387
MSE 0.0348 0.0327 0.0325 0.0318

For this river flow time series, the proposed method can get more satisfactory results
than other methods.

5. Conclusions. In this paper, a kind of fuzzy modeling method is proposed for forecast-
ing time series. By marginal linearization scheme, fuzzy models with different structures
can be established. Further, constant weight synthetic and variable weight synthetic are
applied to calculating the forecasting value of the fuzzy model respectively. In the future
research, it could be beneficial to discuss the parameters identification of fuzzy models
for improving the forecasting accuracy of time series.
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