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Abstract. This study focuses on developing a simple three-layer Artificial Neural Net-
work (ANN) model for automatic classification of road anomalies. The model is partic-
ularly important to facilitate the development of the road condition monitoring system.
We limit the discussion to the system that utilizes vehicle vibration data to predict the
associated road condition. The vibration data are obtained from a probe vehicle running
over four road types: a road in a good condition, a road containing a pothole, a road
containing a speed bump, and a road containing an expansion joint. The data are then
used to extract the vehicle maximum rates of rotations in three directions: pitch, roll,
and yaw. This study reports the aspects of the optimum size of the training data, the
effects of the number of the neurons in the hidden layer, and the level of the achievable
classification accuracy. The results show the optimized model with three neurons on the
hidden layer is able to correctly classify damages at 85% accuracy.
Keywords: Road anomalies, Damage classification, Artificial neural network (ANN),
Gyroscope

1. Introduction. In 2009, Indonesia legislated the law number 22 regarding traffic and
transportation [1]. The law stipulates that the road administrator should immediately
repair any damaged road that can lead to traffic accidents. If they are not able to do so,
they oblige to put signs on the damaged road to prevent the occurrence of traffic accidents.
For any traffic accident, the road administration may be imprisoned for a duration of six
months up to five years or fined for an amount of 12 million rupiah up to 120 million
rupiah depending on the victim conditions.

For the reason, the road administrator should consider the maintenance of the road
conditions to the utmost degree. Thus, the road administrator needs an information
system that can provide the roads status of the entire road network in a timely manner.
By considering the pervasiveness of the road network particularly in the metropolitan
city such as Jakarta, it is extremely difficult and time consuming to monitor the road
condition manually [2]. The manual road monitoring is not only difficult but also very
dangerous.

Several researches regarding automating damaged road detection have been undertaken.
They have evaluated various detection schemes including the 3D pavement reconstruc-
tion methods [3, 4], laser imaging method [5, 6], computer vision techniques [7, 8], and
vibration-based methods [9, 10, 11, 12, 13]. Some of those methods require special devices
making them uneconomical and difficult to implement practically.

In this field, many recent publications proposed methods developed based on image
processing. These developments can be classified according to the size of the damaged
area that is covered and the type of the damages. [14, 15, 16] developed methods to
observe damages in wide area such as disconnected road segments due to earthquake.
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Many proposed techniques are proposed for observing and quantifying damages in narrow
area on road segments such as cracks [16, 17, 18], and potholes and spallings [19, 20, 21].

To cover wide observation area, [14] developed a system to classify damages on roads
and building due to earthquake based on satellite images prior and after the event. Some
computational intelligence methods were used to generate damage features and to classify
the damage types. In addition, [15] proposed a method to detect road discontinuity based
on remote sensing images. Finally, [16] developed a method to detect crack and surface
damage due to earthquake for a robot.

To cover narrow observation area, [17] evaluated the use of random structured forests
to detect cracks on concrete. Moreover, [18] proposed MorpLink-C algorithm that uses a
neural network to improve the crack detection. [19] developed a neural network model to
detect potholes. [20] developed a method to detect patches on pavements.

[22] provided a comprehensive list regarding image processing methods as well as com-
putational intelligence methods that have been studied for the purpose of damage detec-
tion and classification in civil infrastructure.

As demonstrated in [9, 10, 11, 12, 13, 23], the vibration-based method has the po-
tential and can be implemented using low-cost mobile devices. The method has been
evaluated in conjunction with a simple road damage classification method [12]. In [24],
the classification is performed by an Artificial Neural Network (ANN) model.

In this work, the vibration-based method is studied further by taking into account the
data obtained by gyroscope sensor. To the best of our knowledge, the majority of the
previous vibration-based methods relied on accelerometer data [2, 9, 12, 24]. Both the gy-
roscope and accelerometer sensors are also widely available in many modern smartphones.
Thus, the current method is scalable and can be implemented at a low cost.

The manuscript has the following structure. Section 2 describes the research procedure
including the data collection and analysis methods. Section 3 presents the data recorded
by the gyroscope for a normal road and damaged roads, the accuracy of the road-damage
classification, and the most relevant feature data. Finally, Section 4, outlines the salient
findings of this work and a proposal for future works.

2. Research Method.

2.1. The decision tree-based method. A simple vibration-based road damage classi-
fication scenario was proposed by [9]. It was based on a decision tree. The path to the
decision regarding the types of road anomalies is reproduced in Figure 1. The decision
making process is described in the following.

The main data for detection were the vehicle acceleration in the vehicle lateral direction
(x) and vertical direction (z). The longitudinal direction is assumed to be insensible to
the damage. The lateral direction is in respect to the vehicle-side direction.

The detection is performed in the following sequences. The detection began by recording
a stream of the 256 acceleration data. However, firstly, the vehicle velocity was evaluated;

Figure 1. The flowchart of the pothole detection procedure [9]
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if it was too low, the stream of the data would be ignored, and a new stream of the data
would be taken. If the stream data passed the previous velocity checking, the data would
be filtered with a high-pass filter. Subsequently, only the z direction acceleration data (az)
were evaluated against a threshold, tz. The data stream would be further processed if the
maximum of az (amax

z ) exceeded tz; otherwise, a new data stream would be taken. Next,
the x direction acceleration data within the time interval centered at the time of amax

x

was evaluated for its largest value (amax
x ). The interval width was 32 data. Again, this

extreme value would be checked against a threshold tx; and similar to the previous rule,
if amax

x < tx, the data stream ignored and new one would be taken. The last evaluation
was that to reject the data stream if tmax

z < ts · v, where ts is the threshold and v is the
vehicle traveling velocity.

The current proposal differs from the previous method in two aspects. First, the current
method uses the rates of rotation data collected by gyroscope instead of the acceleration
data. Second, the classification is performed by an ANN model instead of a decision tree.

2.2. Data acquisition process. The data for the current study are collected and ana-
lyzed according to the following procedure. The data are collected by using 3D gyroscope
sensors on a smartphone at the sampling rate of 5 ms. The smartphone and its coordinate
system are shown in Figure 2. The phone is then glued to the dashboard of a vehicle.
The attention is given on the elevation and alignment of the phone with respect to the
vehicle coordinate system. The type of used vehicle is Toyota Avanza (see Figure 3).

The y-axis aligns with the vehicle longitudinal direction, positive pointing to the vehicle
front side. The x-axis aligns with the vehicle lateral direction. The z-axis aligns with the
vehicle vertical direction. We note that according to [12], the recorded vibration in x- and
z-directions are crucial for detecting the pothole. When one of the vehicle tires enters a
pothole, the vehicle undergoes vibration in the two axes.

Figure 2. The coordinate system of the used smartphone. The z-axis
aligns with the vehicle vertical direction, x-axis with the lateral direction,
and y-axis with the longitudinal direction.

Figure 3. The used vehicle in the data collection
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Two types of smartphones are used to record the vehicle rates of rotation data. They
are OnePlus One (Device A) and Lenovo P70 (Device B). Device A is placed on the car
dashboard. Meanwhile, Device B is in the middle section of the car floor in front of the
second row car seats. A third party software, AndroSensor, is used to record the data.
The application records the data and saves them in csv-file format.

The test vehicle is driven to travel along a road in good condition, and a road containing
a pothole, a speed bump, and an expansion joint. Those road anomalies are located
separately, so each anomaly can be measured uniquely. The test vehicle is maintained
at the velocity of 3 m/s and 6 m/s. For each setting, the experiment is repeated for
60 times. These settings are approximation and only controlled by a visual examination
of the vehicle odometer. The pothole is produced artificially by removing some paving
blocks. The hole is varied in size as a small hole with a length of 20-30 cm and a big hole
with a length of 40-60 cm. The vibration data are recorded for a travel distance of 10 m,
approximately. The vehicle hits the road anomalies at around the middle of the travel
distance.

Prior to the extraction of the data, a number of pre-processes are applied to the data.
First, it is the zero shift where the recorded data are subtracted with its mean value. This
process is applied to the data in the three directions: x, y, and z. Second, the data are
filtered using a low-pass filter called Savitzky-Golay filter [25] with the first polynomial
order and the frame size of 41. We establish a window having a length of 64 points
centered on the time when the test vehicle hits the road anomaly. Those data in the
window are subjected to a Hamming window and transformed into the frequency domain
using the fast Fourier transformation [26].

2.3. Damage sensitive features and neural network model. The maximum of the
vehicle rotation rates in the vertical and lateral directions are considered to be the main
features of the vehicle vibration. It can strongly be related to the road anomalies. In
addition, we also take into account the dominant frequency associated with the vehicle
rotations.

ANN is used as the classification method because of its capability to learn from examples
and capture the functional relationships among the hard description of data. The network
is a multilayer back-propagation network. This network uses sigmoid as its activation
function. Network parameters such as percentage of training data and number of hidden
layers are varied to establish the most optimum network model. The detail of the model
is described in Table 1.

Table 1. The parameters and their values related to the three-layer arti-
ficial neural network model in the study

Parameter Value
Activation function Sigmoid
Learning rate 0.3
Momentum 0.2
Epochs 10000
The number of neurons in the hidden layer 2-9
The portion of data for the training 10-90%
The portion of data for the validation* 50%
The portion of data of the testing set* 50%
∗The percentage is with respect to the remaining data. For example, if the training
phase utilizes 60% of the data, the remaining 40% data are equally divided for the
validation and testing phases.
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3. Results and Discussion. Firstly, we discuss how the gyroscope in the probe vehicle
is responding to each of the road anomalies. The typical responses recorded by the
gyroscope when the probe vehicle crosses each of the road anomalies are presented in
Figure 4. The figure contains four panels where each panel shows the responses in the
three vehicle axes: x-, y-, and z-directions. Those directions are related to the vehicle
lateral, longitudinal, and vertical directions. Thus, the rate related to the x direction
denotes the vehicle rate of pitch. Similarly, the y- and z-directions denote the vehicle
rates of rotations in roll and yaw.

The data in the figure show the following phenomena. When the probe vehicle runs
across the normal road, no significant vehicle rotations in the three directions are recorded
by the gyroscope sensor. This sample of data shows that the maximum pitch rate is as
low as 0.09 rad/s. Similarly, the maximum roll and yaw rates are as low as 0.08 rad/s and
0.0069 rad/s, respectively. These data also suggest that the yaw rate is weakly affected
by the vehicle movement.

Figure 4(b) shows the typical vehicle rates of rotations when the vehicle runs over a
pothole. We witness significant vehicle rotations in pitch and in roll. This sample of data
shows the maximum pitch rate reaches a value of 0.15 rad/s. Notably, the maximum roll

(a) Normal road condition (b) Pothole

(c) Speed bump (d) Expansion joint

Figure 4. The typical recorded vehicle rates of rotations in x-, y-, and
z-directions when the the probe vehicle runs over a normal road condition,
a road with a pothole, a road with a speed bump, and a road with an
expansion joint. Those directions are related to the vehicle pitch, roll, and
yaw, respectively.
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rate is even higher at the value of 0.28 rad/s. Finally, we note that the maximum yaw
rate is still extremely low at 0.0016 rad/s.

Now, let us shift our focus to the case of speed bump. The relevant data are presented in
Figure 4(c). This sample data show the vehicle maximum pitch rate reaches an extremely
high value of 0.48 rad/s. Meanwhile, the rates of roll and yaw rotations are negligible.

Finally, we look closely to Figure 4(d) that presents the data for expansion joint case.
In this sample of data, the maximum pitch rate reaches a value of 0.3048 rad/s and the
maximum roll rate at the value of 0.2021 rad/s.

From our observations on the effect of the road conditions to the vehicle rotation rates,
we conclude the following (see Table 2). The vehicle pitch rate is affected by the three
road anomalies, namely, pothole, speed bump, and expansion joint. Speed bump leads to
the fastest vehicle rate of rotation. A significant rate in roll occurs when the vehicle hits
a pothole.

Table 2. The effects of the road conditions to the vehicle rotations in the
three directions: x (pitch), y (roll), and z (yaw). More ‘×’ means larger
effect.

Road Anomalies
Vehicle Directions

x (Pitch) y (Roll) z (Yaw)
Normal − − −
Pothole × ×× −
Speed Bump ××× − −
Expansion Joint ×× × −

Next, we extract the maximum rates of rotations from each direction and use them to
develop an ANN model for classifying the damage types. In addition to the rate data, we
also extract the dominant frequencies by using the fast Fourier transform [26]. The data
of rates and dominant frequencies constitute all features for the damage detection.

The first question that needs to be addressed in this research where the number of
recorded data is limited is to establish the number of data required to produce a reliable
ANN model. If the number of training data is too small, we expect the training will not
produce a good applicable model for general use. On the other side, if the number is
too big, it will leave only a limited number of data for testing. In this case, the testing
accuracy may be very high due to the limited variability in the testing data.

As a general guideline, the appropriate number of data for training should be able to
produce a reliable model where the model performance is not affected by the data size. For
this purpose, we train our ANN model by varying the number of training data from 10%
up to 90% of the total data of 832 records. For each portion, Monte Carlo simulation is
performed where the ANN model parameters are estimated from different random initial
values.

The results are depicted in Figure 5. The results are in agreement with our anticipation.
The model has low prediction accuracy when it is trained from a small size of data.
However, it has high accuracy when the training data size is big. We witness, for the
training data size in the range of 40% up to 60%, the model accuracy is rather reliable
irrespective of the data size.

From these results, we conclude that the training data size of 50% of the total records
should facilitate the development of a reliable and generally applicable ANN model. This
number will be used in the following investigations.

In the present three-layer neural network model, the number of the neurons in the
hidden layer is a variable that needs to be optimized. The number of neurons in the input
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Figure 5. The effects of the size of the training data to the prediction
accuracy in the testing phase

Figure 6. The effects of the number of neurons in the hidden layer to the
classification accuracy in the testing phase

layer is fixed depending on the number of features. In the output layer, the number of
neurons is also fixed.

In the search of the optimal model, we adopt the law of parsimony, which seeks for the
most simple but economical model. In other words, we seek for a model that provides
highest prediction accuracy and has the lowest computational cost. The problem is also
solved by applying Monte Carlo simulation where the number of neurons is varied from
two up to nine neurons. For each size of neurons, the model is trained for 100 times, and
the model prediction accuracy is evaluated for each training. The results are depicted
in Figure 6 where the accuracy of the model during the test phase is plotted against the
number of neurons in the hidden layer. The figure helps us to conclude that the model
having two neurons in the hidden layer is not sufficient as it has high variability in the
accuracy; hence, it is less reliable.
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Table 3. The six studied cases to reveal the most important feature

Cases
Features

θ̇x θ̇x fdom
x fdom

y

A × ×
B × × × ×
C × × ×
D × × ×
E × × ×
F × × × ×

Figure 7. The effects of types of features to the classification accuracy.
The vertical axis is the accuracy in percent. The features associated with
the cases of A, B, . . . , F are provided in Table 3.

The model with three neurons seems to be the one that fits with the parsimony law: the
most simplest model but sufficiently accurate. Despite its simplicity, the model accuracy
is in par with those complex models with more neurons in the hidden layer.

Finally, we discuss how the features affect the classification accuracy. We only discuss
four features, namely, the maximum rate of rotation in x direction or pitch rate (ωmax

x ),
the maximum rate of rotation in y direction or roll rate (ωmax

y ), the dominant frequency

associated with the pitch rate (fdom
x ), and the dominant frequency associated with the

roll rate (fdom
y ). We study the combination of features as those are tabulated in Table 3.

In Case A, the damage classification is performed based only on ωmax
x and ωmax

y features.
For each case, Monte Carlo simulation is used to understand the statistical distribution
of the classification accuracy.

The results presented in Figure 7 indicate the cases of A, B, E, and F tend to produce
rather similar level of accuracy. This suggests that only the features of ωmax

x and ωmax
y

are the most significant to the classification accuracy. Removing any of those features
reduces the level of accuracy significantly as demonstrated by the results of the cases C
and D.

4. Conclusions. This research article discusses the problem of automatic road-damage
classification based on vehicle vibration data by using a machine learning approach. Pre-
viously, the problem was solved by using a decision tree and vehicle acceleration data
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in longitudinal and lateral directions. The present approach uses a simple three-layer
ANN model and vehicle rates of rotation data. This approach is able to classify the road
damage at 85% accuracy. It is also found that the ANN model with three neurons on the
hidden layer seems to be optimum. The contributions of the dominant frequencies to the
accuracy are negligible. The maximum vehicle rates of rotations in the longitudinal and
lateral directions are the determining factors on the classification accuracy.

By comparing the current results to those of [24], we see that the achieved accuracy
level by using the acceleration data and that by using the rotation-rate data are rather
comparable. We suspect that by combining the two types of data, a higher classification
accuracy may be achieved. We leave this issue for the future work.

REFERENCES

[1] Undang-Undang Republik Indonesia Nomor 22, Tentang Lalu Lintas dan Angkutan Jalan, 2009.
[2] F. Seraj, B. J. van der Zwaag, A. Dilo, T. Luarasi and P. Havinga, Roads: A road pavement

monitoring system for anomaly detection using smart phones, Big Data Analytics in the Social and
Ubiquitous Context, Springer, pp.128-146, 2014.

[3] J. Wang, S. Ma and L. Jiang, Research on automatic identification method of pavement sag de-
formation, ICCTP 2009: Critical Issues in Transportation Systems Planning, Development, and
Management, pp.1-6, 2009.

[4] G. Jog, C. Koch, M. Golparvar-Fard and I. Brilakis, Pothole properties measurement through vi-
sual 2D recognition and 3D reconstruction, Proc. of the International Workshop on Information
Technology in Civil Engineering: Computing in Civil Engineering, pp.553-560, 2012.

[5] X. Yu and E. Salari, Pavement pothole detection and severity measurement using laser imaging,
IEEE International Conference on Electro/Information Technology (EIT), pp.1-5, 2011.

[6] S. Venkatesh, E. Abhiram, S. Rajarajeswari, K. S. Kumar, S. Balakuntala and N. Jagadish, An
intelligent system to detect, avoid and maintain potholes: A graph theoretic approach, The 7th
International Conference on Mobile Computing and Ubiquitous Networking (ICMU), p.80, 2014.

[7] A. Danti, J. Y. Kulkarni and P. S. Hiremath, An image processing approach to detect lanes, pot
holes and recognize road signs in Indian roads, International Journal of Modeling and Optimization,
vol.2, no.2, pp.658-662, 2012.

[8] L. Huidrom, L. K. Das and S. Sud, Method for automated assessment of potholes, cracks and patches
from road surface video clips, Procedia – Social and Behavioral Sciences, vol.104, pp.312-321, 2013.

[9] J. Eriksson, L. Girod, B. Hull, R. Newton, S. Madden and H. Balakrishnan, The pothole patrol:
Using a mobile sensor network for road surface monitoring, The 6th Annual International Conference
on Mobile Systems, Applications and Services (MobiSys 2008), Breckenridge, USA, 2008.

[10] A. Vittorio, V. Rosolino, I. Teresa, C. M. Vittoria, P. G. Vincenzo et al., Automated sensing system
for monitoring of road surface quality by mobile devices, Procedia – Social and Behavioral Sciences,
vol.111, pp.242-251, 2014.

[11] K. De Zoysa, C. Keppitiyagama, G. P. Seneviratne and W. Shihan, A public transport system based
sensor network for road surface condition monitoring, Proc. of the 2007 Workshop on Networked
Systems for Developing Regions, p.9, 2007.

[12] F. E. Gunawan, Yanfi and B. Soewito, A vibratory-based method for road damage classification,
International Seminar on Intelligent Technology and Its Application (ISITIA), Institut Teknologi
Sepuluh Nopember, Surabaya, Indonesia, http://dx.doi.org/10.1109/ISITIA.2015.7219943, 2015.

[13] V. Astarita, M. V. Caruso, G. Danieli, D. C. Festa, V. P. Giofrè, T. Iuele and R. Vaiana, A mobile
application for road surface quality control: Uniqualroad, Procedia – Social and Behavioral Sciences,
vol.54, pp.1135-1144, 2012.

[14] M. Izadi, A. Mohammadzadeh and A. Haghighattalab, A new neuro-fuzzy approach for post-
earthquake road damage assessment using GA and SVM classification from quickbird satellite images,
Journal of the Indian Society of Remote Sensing, vol.45, no.6, pp.965-977, 2017.

[15] S. Leninisha, K. Vani, A. A. Adline and V. Vani, Damaged road detection in rural areas for improving
agricultural marketing, Technological Innovation in ICT for Agriculture and Rural Development
(TIAR), pp.90-95, 2015.

[16] M. M. Torok, M. Golparvar-Fard and K. B. Kochersberger, Image-based automated 3D crack detec-
tion for post-disaster building assessment, Journal of Computing in Civil Engineering, vol.28, no.5,
2013.

[17] Y. Shi, L. Cui, Z. Qi, F. Meng and Z. Chen, Automatic road crack detection using random structured
forests, IEEE Trans. Intelligent Transportation Systems, vol.17, no.12, pp.3434-3445, 2016.



1098 F. E. GUNAWAN

[18] L. Wu, S. Mokhtari, A. Nazef, B. Nam and H.-B. Yun, Improvement of crack-detection accuracy
using a novel crack defragmentation technique in image-based road assessment, Journal of Computing
in Civil Engineering, vol.30, no.1, 2014.

[19] S. Sutikno, H. A. Wibawa and P. Y. Budiarto, Classification of road damage from digital image using
backpropagation neural network, IAES International Journal of Artificial Intelligence (IJ-AI), vol.6,
no.4, pp.159-165, 2017.

[20] S. C. Radopoulou and I. Brilakis, Patch detection for pavement assessment, Automation in Con-
struction, vol.53, pp.95-104, 2015.

[21] M.-K. Kim, H. Sohn and C.-C. Chang, Localization and quantification of concrete spalling defects
using terrestrial laser scanning, Journal of Computing in Civil Engineering, vol.29, no.6, 2014.

[22] C. Koch, K. Georgieva, V. Kasireddy, B. Akinci and P. Fieguth, A review on computer vision based
defect detection and condition assessment of concrete and asphalt civil infrastructure, Advanced
Engineering Informatics, vol.29, no.2, pp.196-210, 2015.

[23] V. Douangphachanh and H. Oneyama, Exploring the use of smartphone accelerometer and gyroscope
to study on the estimation of road surface roughness condition, The 11th International Conference
on Informatics in Control, Automation and Robotics (ICINCO), vol.1, pp.783-787, 2014.

[24] Y. Purnama and F. E. Gunawan, Vibration-based damaged road classification using artificial neural
network, TELKOMNIKA Indonesia Journal of Electrical Engineering, 2018.

[25] A. Savitzky and M. J. E. Golay, Smoothing and differentiation of data by simplified least squares
procedures, Analytical Chemistry, vol.36, no.8, pp.1627-1639, 1964.

[26] E. O. Brigham, The Fast Fourier Transform, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1974.


