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Abstract. In manufacturing industries, some operating machines may become unavail-
able and hence need to be maintained preventively so as to keep it at the desired reliability,
and the original scheduling plan is not applied to current situation. Thus, this paper in-
vestigates the incorporation of balance and preventive maintenance in U-shaped assembly
line. And two objectives including cycle time and assignment alteration for this new
problem need to be optimized. This problem contains two stages in which the first is
regular U-shaped assembly line balancing problem and the second stage reassigned tasks
into the machines which are not maintained in next cycle. Later, this paper also designed
two meta-heuristic algorithms including elitist non-dominated sorting genetic algorithm
and multi-objective simulated annealing algorithm to solve this problem. A hypothetical
data set based on the benchmark instances is generated for the U-shaped assembly line
balancing problem under machines deterioration and preventive maintenance. And the
proposed two meta-heuristics are employed to obtain the Pareto frontier of these bench-
mark instances and their results are compared with each other.
Keywords: U-shaped assembly lines, Preventive maintenance, Meta-heuristic algo-
rithms

1. Introduction. U-shaped assembly line is widely utilized in manufacturing systems. It
is responsible for the scheduling of tasks in workstations and balancing of the workstation
workload. Since it was proposed and modeled by Miltenburg and Wijingaard [1], this
high efficiency configuration has been widely studied in the literature. And according
to the objective function, the U-shaped assembly line balancing problem (UALBP) can
be divided into three sub-problems. (1) For a given cycle time, the tasks are assigned
to workstation in the U-shaped assembly line to minimize the number of workstations.
This problem is named as type-I UALBP. (2) For a given number of workstations, the
objective function is to optimize the cycle time, which is called as type-II UALBP. (3)
Without the given cycle time or the number of workstations, maximizing the line efficiency
is the mainly function. This problem is named as type-E UALBP. When assigning the
tasks into workstations, it should meet the cycle time constraint and precedence relation
constraint. Due to this feature, the U-shaped assembly line balancing problem belongs to
the NP-hard problems.

Apart from the production scheduling, the machine maintenance also has impacts on
the machine’s capacity and reliability [2]. In general, machine maintenance includes two
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types: corrective maintenance (CM) and preventive maintenance (PM). CM is carried out
when the machine has broken down to make it as good as new. PM is taken on a machine
when it is still on operating in order to keep it at the desired level and avoid breakdown
[3]. In most industrial enterprises, the production will be halted to carry out the PM on
some machines, which brings great losses.

Thus, this paper formulates the preventive maintenance integrated in the U-shaped
assembly line balancing problem aiming to promise the smooth production when the PM
is carried out and hence reduce production cost. However, to our knowledge, there is
no research studying the U-shaped assembly balancing problem under preventive mainte-
nance. In this paper, the first contribution is to formulate this new problem to optimize
the cycle time and the assignment alteration simultaneously. The former is the regular
objective of assembly line to present the production improvement, and the latter is a new
proposed objective to reduce the task alteration. And the second contribution is to design
two meta-heuristics including elitist non-dominated sorting genetic algorithm (NSGA-II)
and multi-objective simulated annealing algorithm (MOSA) since these two algorithms
have great performance in the regular UALBP. The Pareto frontiers obtained by these
two algorithms are compared with each other.

2. Problem Statement. Different from the regular U-shaped assembly line balancing
problem, this new problem contains two stages where the first stage represents normal
U-shaped assembly line balancing and the second stage is the maintenance period. Mean-
while, before assigning the tasks into workstations in these two stages, we should firstly
allocate the machines to each station. Each workstation must be equipped with one ma-
chine, and the number of machines is equal to that of stations. After the allocation of
machines is determined, it keeps unchanged in two stages. And since the processing time
of task depends on the machines, the processing time of task can be determined when the
task is assigned to a workstation.

In the first stage, each machine is on work and the tasks are assigned to workstations.
Here, we describe the first stage as follows. A set of tasks i {i = 1, 2, 3, . . ., n} needs to
be assigned to the entrance subline or exit subline of workstation j {j = 1, 2, 3, . . ., m}.
Among them, if a task is selected to be assigned due to its all allocated immediate prede-
cessors, it is assembled on the entrance subline of current station. On the contrary, since
its immediate successors have been assigned, this task is assembled on the exit of current
station. And then, the maximum workstation time is regarded as the first cycle time.

In the second stage, some machines need to be maintained and the tasks need to
be reassigned to the workstations where the machine is operating. Compared with the
first stage, since the number of machines has decreased, the corresponding number of
workstations is also smaller than that in the first stage. In this situation, the workstations
where the machines need to be maintained are not allocated with tasks. The second
objective is assignment alteration, which can be calculated by the equation

∑n
i

∣∣∑m
j j ×

(Xij,1+Yij,1)−
∑m

j j×(Xij,2+Yij,2)
∣∣, where Xij,1 and Yij,1 respectively are task i allocated

to the entrance subline or exit subline of workstation j in the first stage, and Xij,2 and
Yij,2 are in the second stage.

3. Meta-Heuristic Algorithms. Since the U-shaped assembly line balancing problem
is NP-hard problem, with the increase of problem’s scale, it can be difficult to obtain the
optimal solutions. However, the meta-heuristic algorithm can solve the large and complex
problems with an acceptable time [4]. So to achieve the optimization of U-shaped assembly
line balancing problem under machines deterioration and preventive maintenance, this
paper designs NSGA-II and MOSA, which have been proved to be effective and efficient
for large optimization problem. The detail of these algorithms is described as follows.
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3.1. Solution representation. In the NSGA-II and MOSA, solutions are constructed
according to two numeric strings in which the first string forms with a set of machine
numbers and the second is composed of rule numbers. For the first numeric string, its
length is equal to the number of workstations and each value is randomly generated with
non-repeating. For the second numeric string, the length is equal to the number of tasks,
and each value is randomly generated between [1, 10]. Among them, these heuristic rules
are proposed by Baykasoǧlu and Özbakır [5] to obtain high quality solutions. For exam-
ple, a code is constructed as {3, 1, 2|3, 2, 1, 1, 6, 3, 4, 5, 6}. In this code, the first numeric
string is {3, 1, 2} which means the workstations 1, 2 and 3 are respectively allocated with
machines 3, 1 and 2. And the second numeric string is {3, 2, 1, 1, 6, 3, 4, 5, 6} in which the
first assigned task is selected from the candidate set based on the rule 3. And a task is put
into candidate set if the task is unassigned and its immediate predecessors or immediate
successors have been assigned.

Observing the above code, we can find that we just know the allocation of machines
while the assignment of tasks into predefined workstation in each stage and the objective
functions are unknown. Thus, this paper employs the decode mechanism proposed by
Zhang et al. [6,7], in each stage to obtain the information and make the above code into
a feasible balancing solution.

3.2. Elitist non-dominated sorting genetic algorithm. Elitist non-dominated sort-
ing genetic algorithm (NSGA-II) was first proposed by Deb et al. [8] to deal with bi-
objective optimization problems. This algorithm starts with an initial population and
then explores the solution space by crossover, mutation and selection operators. Among
them, considering the characteristic of U-shaped assembly line balancing problem under
machine deterioration and preventive maintenance, this paper designs two types crossover
operators and mutation operators on the task and machine vectors respectively. In the
selection operator, this algorithm selects new population based on the crowded distance
and Pareto stratum. The procedure of the proposed NSGA-II is shown in Figure 1 and
the detail is described as follows.

(1) Initiation. The NSGA-II algorithm generates PS solutions by the above proposed
encoding and decoding mechanism in the initiation. And then, an archive set is created
to store the Pareto frontier. The non-dominated solutions in the initial population are
put into this archive.

(2) Crossover. In this study, to promise the global optimization, two crossover opera-
tors are implemented. These operators exchange the elements of two parents in task and
machine vectors respectively. After the crossover, the offspring chromosomes also meet
the precedence relationship.

Task crossover: a random point is generated in parent 1, and the tasks before this point
are put into the offspring 1 at the same position. And then, the tasks in parent 2 are
successively put behind the offspring 1 without repetition.

Machine crossover: this operator is similar to the task crossover, but it is carried out
on the machine vector.

(3) Mutation. Two mutation operators are adopted in this study. In the task mu-
tation, a task is randomly selected and then moved to another position. After moving,
the new task vector should meet the precedence relationship. If violating, this task is
removed until meeting the precedence relationship. For the machine vector, two machines
are selected and swapped their position. At the same time, the process mode of two
mutation operators is similar to that of crossovers.

(4) Selection. After crossover and mutation, we update the archive Pareto frontier
and select new solutions for next iteration in selection operator. For each offspring, if it
is not dominated by the Pareto frontier, it is added into the archive and the solutions
in the Pareto frontier dominated by this offspring are removed from the archive. Then
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Algorithm: NSGA-II algorithm
1: Input the parameters including the population size (PS), crossover

rate (CR) and mutation rate (MR);
2: Generate initial population by the encode and decode;
3: Update the Pareto frontier;
4: For the Stopping Criterion is not satisfied do
5: For each parent do
6: Randomly generate numbers a1 and a2;
7: If a1 < CR & a2 < CR do
8: Create the child by applying crossover on task and machine;
9: If a1 < CR & a2 > CR do

10: Create the child by applying crossover on task;
11: End For
12: For each parent do
13: Randomly generate numbers a3 and a4;
14: If a3 < MR & a4 < MR do
15: Create the child by applying mutation task and machine;
16: If a3 < MR & a4 > MR do
17: Create the child by applying mutation on task;
18: End For
19: Update the Pareto frontier;
20: Selection parents for next iteration;
21: End For
22: Return Pareto frontier;

Figure 1. The flowchart of NSGA-II

we combine the parent and offspring populations to a new population. And this new
population is divided into different levels based on the Pareto. The solution in the higher
level is dominated by the solution in the lower level. If the number of solutions (ns) in
the first i-th levels is not more than PS and that in the first (i + 1)th levels is more than
PS, the ns solutions in the first i-th levels are selected and PS-ns solution are selected
from the (i + 1)th level based on the crowd distance.

3.3. Multi-objective simulated annealing algorithm. This algorithm starts with
one solution and then generates new solution by its neighbor structure. Finally, a partic-
ular acceptance criterion is employed to judge whether this neighbor solution is accepted.
To deal with our new problems, we also propose a multi-objective simulated annealing
algorithm (MOSA) to optimize the cycle time and assignment alteration simultaneously.
The procedure of MOSA is shown in Figure 2 and the details are described as follows.

(1) Initiation. This algorithm first sets T0, α and IT, and set current temperature T =
T0. And an initial solution X0 is generated by above encoding and decoding mechanism
and set current solution Xc = X0. Meanwhile, put the initial solution into archive Pareto
frontier.

(2) Neighbor structures. A neighbor solution X1 is obtained from current solution.
In the proposed MOSA, we regard the above mutation operators as neighbor structures
and then create neighbor solution. And these structures are used in the following operator.
Two numbers a1 and a2 are generated between [0, 1]. If a1 < 0.5 and a2 < 0.5, create the
neighbor solution X1 by the two neighbor structure; if a1 < 0.5 & a2 > 0.5, create the
neighbor solution X1 by the task mutation; otherwise, create the neighbor solution X1 by
the machine mutation.
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Algorithm: MOSA algorithm
1: Input the parameters including the initial temperature (T0), cooling

rate (α) and maximum number of iterations (IT);
2: Generate one initial solution X0 by the encode and decode;
3: Put the initial solution into Pareto frontier;
4: For the Stopping Criterion is not satisfied do
5: counter = 0;
6: If counter < IT do
7: Randomly generate numbers a1 and a2;
8: If a1 < 0.5 & a2 < 0.5 do
9: Create the neighbor solution X1 by the two neighbor structure;

10: Else If a1 < 0.5 & a2 > 0.5 do
11: Create the neighbor solution X1 by the first structure;
12: Else
13: Create the neighbor solution X1 by the second structure;
14: If X1 is non-dominated by the Pareto frontier do
15: Update the Pareto frontier;
16: Else
17: randomly select one objective function f ;
18: ∆ = f(X1) − f(X0);
19: If ∆ < 0 do
20: X0 = X1;
21: Else If EXP(−∆/T ) > random number do
22: X0 = X1;
23: counter = counter + 1;
24: Else
25: T = α × T ;
26: End For
27: Return Pareto frontier;

Figure 2. The flowchart of MOSA

(3) Pareto frontier update and acceptance criterion. In above steps, a neighbor
solution is obtained, and then this solution should be checked whether it can be dominated
by the Pareto frontier and whether it can replace the current solution. If the neighbor
solution cannot be dominated by the Pareto frontier, this solution is put into the Pareto
frontier and then the solutions dominated by the neighbor solution in the Pareto frontier
are removed. Meanwhile, the neighbor solution replaces current solution to explore its
neighbor structure. If not, a multinomial probability mass function proposed by Kulturel-
Konak et al. [9] is applied to checking whether the neighbor solution can replace the
incumbent one. For the multi-objective problems, we first randomly select an objective
f(x), and then calculate the difference ∆ (∆ = f(neighbor solution) − f(current solution)).
If the difference is less than 0 or the EXP(−∆/T ) exceeds a random number, the neighbor
solution is accepted as the current solution.

4. Result Comparison. In this section, a set of benchmark instances is utilized to
analyze the performance of the two proposed meta-heuristic algorithms. The prece-
dence relationship and original processing time of these problems come from the website:
http://assemb-ly-line-balancing.mansci.de/. And the processing time of task i by ma-
chine h is randomly generated between [ti × 0.8, ti × 1.2] [10], in which ti is the original
processing time. And in the second cycle time, the machines performing maintenance are
randomly determined. All these experiments are encoded in C++ programming language
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and are run on a computer with Intel(R) Core(TM) i5 CPU, 2.80GHz and 2.00GB RAM.
Besides, the relevant parameters for these two meta-heuristics are shown in Table 1.

To compare the performance of the two proposed meta-heuristic algorithms with each
other, we employ above 32 instances to check it and each instance is respectively run 10
times under five iteration criteria (Ni ×Ni × 10, Ni ×Ni × 20, Ni ×Ni × 30, Ni ×Ni × 40
and Ni×Ni×50 millisecond, where Ni is the number of tasks) for total 3200 experiments
(2 algorithms × 32 instances × 10 times × 5 iteration criteria). And one multi-objective
evaluation indicator, named hyper volume rate (HVR) [11], is utilized to evaluate the

Table 1. The parameters for the NSGA-II and MOSA

Parameters Symbol Value
NSGA-II

Population size
Crossover rate
Mutation rate

PS
CR
MR

120
0.8
0.2

MOSA
Initial temperature
Cooling rate
maximum number of iterations

T0

α
IT

0.5
0.9
500

Table 2. The results of the NSGA-II and MOSA

Instance
Ni × Ni × 10 Ni × Ni × 20 Ni × Ni × 30 Ni × Ni × 40 Ni × Ni × 50

MOSA NSGA-II MOSA NSGA-II MOSA NSGA-II MOSA NSGA-II MOSA NSGA-II
1 0.91 1.00 0.91 1.00 0.84 1.00 0.89 1.00 0.91 1.00
2 0.90 1.00 0.90 1.00 0.67 1.00 0.83 1.00 0.78 1.00
3 0.93 1.00 0.84 1.00 0.75 1.00 0.83 1.00 0.84 1.00
4 0.85 1.00 0.84 1.00 0.91 1.00 0.79 1.00 0.79 1.00
5 0.91 1.00 0.87 1.00 0.88 1.00 0.85 1.00 0.85 1.00
6 0.88 1.00 0.92 1.00 0.90 1.00 0.85 1.00 0.82 1.00
7 0.89 1.00 0.85 1.00 0.83 1.00 0.84 1.00 0.69 1.00
8 0.74 1.00 0.65 1.00 0.78 1.00 0.76 1.00 0.67 1.00
9 1.00 0.86 1.00 0.89 1.00 0.94 1.00 0.95 1.00 0.89
10 1.00 0.96 1.00 0.94 1.00 0.95 1.00 0.96 1.00 0.93
11 0.98 0.98 0.93 1.00 0.95 0.93 0.97 0.92 0.88 1.00
12 0.91 1.00 0.95 1.00 0.90 1.00 0.97 1.00 0.89 1.00
13 0.85 1.00 0.86 1.00 0.86 1.00 0.78 1.00 0.81 1.00
14 0.87 1.00 0.83 1.00 0.82 1.00 0.81 1.00 0.63 1.00
15 0.71 1.00 0.72 1.00 0.75 1.00 0.70 1.00 0.68 1.00
16 0.78 1.00 0.71 1.00 0.67 1.00 0.67 1.00 0.57 1.00
17 0.92 1.00 0.92 1.00 0.93 1.00 0.90 1.00 0.95 1.00
18 0.99 0.96 0.85 0.92 0.96 0.96 0.99 0.92 1.00 0.90
19 0.99 0.86 1.00 0.94 0.93 1.00 0.99 0.98 0.94 0.95
20 0.98 1.00 0.94 0.99 0.93 1.00 0.96 1.00 0.96 1.00
21 0.88 1.00 0.92 1.00 0.90 1.00 0.94 0.99 0.91 1.00
22 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
23 1.00 0.92 1.00 0.99 0.95 0.99 1.00 0.95 0.95 0.99
24 0.95 0.99 0.92 1.00 0.94 1.00 0.97 0.93 0.91 1.00
25 0.92 1.00 0.90 1.00 0.83 1.00 0.79 1.00 0.83 1.00
26 0.86 1.00 0.86 1.00 0.74 1.00 0.68 1.00 0.76 1.00
27 0.87 1.00 0.78 1.00 0.75 1.00 0.72 1.00 0.78 1.00
28 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
29 0.94 1.00 0.80 1.00 0.93 1.00 0.78 1.00 0.83 1.00
30 0.89 1.00 0.87 1.00 0.78 1.00 0.77 1.00 0.79 1.00
31 0.86 1.00 0.78 1.00 0.76 1.00 0.79 1.00 0.80 1.00
32 0.93 1.00 0.93 0.98 0.95 0.99 0.94 0.99 0.90 1.00
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performance of multi-objective algorithms. This indicator is the ratio between the hyper
volume of the obtained Pareto set and that of the true Pareto frontier. The results are
presented in Table 2.

From this table, it can be observed that in most instances, the value of HVR obtained by
NSGA-II is closer to 1 compared with that obtained by MOSA under five iteration criteria
while only in four instances (instances 9, 10, 18 and 19), the HVR of MOSA is larger than
that of NSGA-II. These results indicate that the Pareto frontier obtained by NSGA-II
is the better approximation to the true frontier. And we also depict the comparison
of the Pareto frontiers obtained by these algorithms in Figure 3 to draw the conclusion
more intuitively. This figure depicts two instances under different iteration criteria. From
this figure, we can find that the solutions obtained by MOSA are absolutely dominated
by the Pareto frontier achieved by NSGA-II, which suggests that NSGA-II outperforms
MOSA in U-shaped assembly line balancing under machine deterioration and preventive
maintenance.

(a)

(b)

Figure 3. The comparison of Pareto frontiers for (a) Lutz89 with 12 ma-
chines under Ni × Ni × 30 and (b) Barthol148 with 29 machines under
Ni × Ni × 50
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5. Conclusions. In manufacturing systems, both the production scheduling and preven-
tive maintenance are important problem. Current researches optimize these two problems
separately, which cannot promise the production running smoothly. Thus, this paper
aims to balance the U-shaped assembly lines under machine deterioration and preventive
maintenance. It has great practical significance on the industry. With respect to this new
problem, we first formulate it and then design two meta-heuristics including NSGA-II and
MOSA to minimize the cycle time and task assignment alteration simultaneously. Mean-
while, computational experiments are conducted on benchmark to test the performance of
the proposed algorithms, and a Pareto-compliant performance indicator HVR is employed
to evaluate them. The experiment results indicate that the NSGA-II is superior to MOSA
in most benchmark instances, which also suggests that the Pareto frontier obtained by
NSGA-II has great convergence and diversity.

Future research will be extended to address U-shaped assembly line balancing problems
in which movement of machines in cross workstation should be considered. And the
preventive maintenance can be considered in two-sided assembly line balancing problem.
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