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Abstract. Machine-monitoring data represent the reality on machine shops where un-
certainties exist due to variety of machining conditions. Hence, predicting machining
time using the machine-specific monitoring data in individual machine tools enables to
reduce the uncertainties, thereby building up precise process planning and execution.
However, previous research focused on creating time prediction models at the product
or machining feature level and, did not work properly in different forms of products or
changes in geometry of machining features. To overcome this limitation, it is necessary
to create granular prediction models at the tool path level for gaining accurate time an-
ticipation through creating and composing these granular models along with sequential
tool movements. For such purpose, this study presents a model-driven methodology for
machining time prediction using historical machine-monitoring data. The methodology
consists of: 1) data processing, 2) predictive analytics modeling, and 3) model verification
and validation. A case study is demonstrated to show the effectiveness of the proposed
methodology.
Keywords: Machine-monitoring data, Machining time, Predictive analytics, Machine
learning

1. Introduction. The machine system parameters provide a large amount of data and
information about the machine’s condition, maintenance requirement, quality and effi-
ciency. Those parameters are being designed to meet the requirements of high-speed
and high-precision production which are essential in this era of smart manufacturing
[1]. To support the smart manufacturing technology, machine-monitoring is important.
Machine-monitoring gives the ability of measuring the machine’s performance in real time.
Machine-monitoring obviously outputs the measured datasets called machine-monitoring
data. The machine-monitoring data collected are valuable because they can be used to
make data-driven prediction for efficient shop floor operations [2]. Machine-monitoring
also can be used to improve manufacturing performance by supplying accurate produc-
tivity metrics to improve operations and make better decisions. Data gathered in this
study come from machine-monitoring dedicated to executing a Numerical Control (NC)
program in machine tools [3].

Machine-monitoring data, which records the time span consumed for fabricating a part
by the execution of an NC program, can be used to accurately estimate machining time.
The machining time largely relies on the characteristics of the process parameters to
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be decided in process planning. In milling machine tools, standard machining time is
determined by such process parameters as feed rate, cutting depth, cutting speed [4]. As
automation and mechanization increasingly require faster response to orders, predicting
machining time becomes more critical for deciding accurate delivery time, manufacturing
cost, and production/process planning [5].

In the previous literature, Zhou et al. [6] minimized total completion time in the
hierarchical uniform machine. They use total completion of machining time to make a
manufacturing scheduling. Pfeiffer et al. [7] estimated manufacturing lead time. They use
statistical and simulation methods to make prediction by discrete event simulation model
data. Both researches focused on how to minimize machining time at the production-level.
Coelho et al. [5] presented a practical mechanistic method for milling time estimation.
They developed a software that estimated real machining time more accurately for free-
form geometries. However, their study is only effective in linear tool path interpolation
(G01), but not in circular interpolations (G02/G03). Monreal and Rodriguez [8] discussed
the influences of the tool path strategy on the cycle time of high speed milling operation
by constructing a mechanic model for zig-zag tool path in the pocketing operations only.
Previous studies have contributed to providing good prediction models for machining time;
however, their models have been made within the product or machining-feature level.
These prediction models at product and feature levels accurately work for designated
products or sets of machining features. However, when the geometry of a product or the
geometric parameters of a certain machining feature change, their prediction may lose the
accuracy due to the dependency of those models with such high-level stratification.

The differences of our study with the previous studies are to: 1) use the historical
machine-monitoring data, which have been collected and accumulated from real machines’
operations, and 2) generate granular prediction models that can anticipate machining
time at tool path levels. The purpose study of this research is to propose a model-
driven methodology for machining time prediction using historical machine monitoring
data. The application of the proposed methodology can make better accuracy in time
prediction through the decomposition of such models into tool-path levels and thus reduce
uncertainties in predictive process planning. This paper is structured as follows: Section
2 proposes the methodology; Section 3 explains a case study; Section 4 discusses the case
study; Section 5 remarks conclusions.

2. Methodology. This section describes the proposed methodology for machining time
prediction based on predictive analytics with the use of historical machine-monitoring
data. Our goal is to predict machining time at the tool path level on a milling machine
along with sequential tool movements. For clear understanding, we use an example of three

Figure 1. Machining part [9]
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Figure 2. A predictive analytics modeling methodology

out of thirteen machining features and their associated roughing operations as shown in
Figure 1. Figure 2 shows the methodology that consists of data processing, predictive
analytics modeling, and verification and validation. The following subsections explain the
details of methodology.

2.1. Data processing. Data processing deals with data selection and data pre-process-
ing. The data selection identifies the data parameters that should be extracted from
historical machine-monitoring data. Data selection can be made by finding the relation-
ship between input and output parameters at a given machining condition. In this paper,
we identify Machining Configuration (MC) parameters as well as input and output pa-
rameters in data selection. MC parameters specify a certain machining condition where
a prediction model can be applied. That means an identical set of MC parameters uses
the same prediction model, but a different set of them should use a different model due
to their different machining conditions [9]. MC parameters can be identified as a set of a
machining operation, command, trajectory and tool path, as presented in Table 1. ‘Ma-
chining operation’ can be normally obtained from process plan data, whereas ‘command’,
‘trajectory’ and ‘tool path’ from NC program data.

Regarding input parameters, we use three main process parameters (feed rate, spindle
speed, and cutting depth). It comes from that these parameters are controllable factors

Table 1. Machine Configuration (MC) parameters [9]

Parameter Examples
Operation Contouring, pocketing, slotting, drilling

Command
Rapid (G00), linear feed (G01), clockwise-circular (G02),

counterclockwise-circular (G03)

Trajectory
X-direction, Y-direction, feed, back, step over,

approach, retract, circular
Tool path Approach, Yfeed, Xfeed, Cfeed, Feed, Step, Back, Retract
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and significantly affect machining time [9]. The output parameter is set to be machining
time. Additionally, we extract path position (x, y, z) parameters to detect an accurate
position of each machining feature, and power parameter to detect the stroke count and
to check the validity of position, and timestamp parameter to decide the starting and
finish time at each tool path.

Data pre-processing is the process of transiting “dirty” and “untidy” into “clean” and
“tidy” datasets [10]. It comprises data cleaning, data integration, data transformation and
reduction. Raw machine-monitoring data unintentionally contain missing, erroneous or
inconsistent data due to lack in certain attributes of interest, errors in data transmission,
faults in technological limitations of measurements, or human errors [10]. Hence, data
cleaning is necessary for reducing the uncertainty in data through handling such missing,
erroneous or inconsistent data. In this study, the missing data found are neglected via
deletion methods if it is detected that the rest of data at the same MC parameter set are
enough.

Data integration combines various data sources into a consistent dataset to make it
simple and complete. In this study, for example, we combine several datasets acquired
from three different MC sets into one dataset to make a prediction model for ‘approach’
tool path, which totally depends on machine tool’s performance not on feed rate, spindle
speed and cutting depth. Data transformation adjusts data values into the designated
format, scale or unit to provide more suitability for predictive analytics modeling. Here,
the input parameters (feed rate, spindle speed, and cutting depth) and the output pa-
rameter (time) are scaled-down to the −1-to-1 range from their original values using
z-score normalization. Data reduction removes redundant datasets with satisfaction of
data integrity.

2.2. Predictive analytics modeling. Once the data processing is complete, input-
and-output datasets are prepared to generate predictive models via machine learning
techniques, which learns from training datasets so that it outputs predictive values. Vari-
ous machine learning techniques like regression and artificial neural network are available.
Equation (1) expresses the 2nd-order polynomial regression-based model that figures out
the relationships between the input (x: feed rate, spindle speed, and cutting depth) and
the output (yt: time-range on each stroke) parameters. This equation predicts the time-
range for each stroke, i.e., single tool movement instructed by an NC block, on a set of
MC parameters.

yt = α0 +
n∑

i=1

αixi +
n∑

j=1

αjx
2
j + ε (1)

where α: coefficient, n: number of x variables, ε: error.
Because roughing operations generally contain multiple strokes correspondent to indi-

vidual cutting depth layers, Equation (1) can be adjusted to Equation (2) that expresses
the total time-range for each set of MC parameters, which multiplies the number of strokes
(s) given for removing a machining feature.

ytotal = s

(
α0 +

n∑
i=1

αixi +
n∑

j=1

αjx
2
j + ε

)
(2)

2.3. Verification and validation. Verification and validation is necessary to measure
and compare predicted machining time values with real ones (the values actually ob-
served). For such purpose, we can calculate Root Mean Square Error (RMSE), as ex-
pressed in Equation (3). RMSE measures the differences between individual measured
and predicted machining time values. Prediction models make better performance to pre-
dict correctly as RMSE values are closer to 0. We can also calculate Total Relative Error
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(TRE), which measures the total difference between measured and predicted machining
time.

RMSE =

√∑n
i=1 (ŷi − yi)

2

n
(3)

where ŷi: predicted value, yi: real value, n: the number of pairwise datasets.

3. Case Study. This section describes a case study to demonstrate the feasibility and
effectiveness of our methodology.

3.1. Experimental setup. The objective of this case study is to predict the machining
time consumed during tool path movements. We use the machining part as shown in
Figure 1 and only deal with the three machining features (Profile 1, Pocket 1 and Slot 2)
for problem simplification. Figure 3 shows the configuration of tool path movements in
Profile 1, Pocket 1 and Slot 2. Table 2 presents the sequence of tool path movements for the
three machining features. We perform actual machining to gather real datasets. Table 3
presents a list of process parameters for twelve trials. The experimental environments are:
Mori Seiki NVD 1500DCG for a machine tool, Fanuc 0i for a numerical controller, cold
finish mild steel 1018 for workpiece material, 10.16cm ∗ 10.16cm ∗ 1.27cm for workpiece
geometry, solid carbide flat end mill for a cutting tool, 8mm diameter and 4 numbers of
flutes for cutting tool geometry, and systems insights high speed power meter for power

Figure 3. Tool path movement for (A) Profile 1; (B) Pocket 1; (C) Slot 2

Table 2. Tool path movement sequence on Profile 1, Pocket 1, and Slot 2

Machining
feature

Tool path movement (in sequence)

Profile 1
Approach (A) → Yfeed (B) → Xfeed (C) → Cfeed (D) → Yfeed (E)
→ Cfeed (F) → Xfeed (G) → Cfeed (H) → Yfeed (I) → Cfeed (J) →
Xfeed (K) → Yfeed (L) → Retract (M)

Pocket 1

Approach (A) → Feed (B) → Step (C) → Feed (D) → Step (E) →
Feed (F) → Step (G) → Feed (H) → Step (I) → Feed (J) → Step (K)
→ Feed (L) → Step (M) → Feed (N) → Step (O) → Feed (P) → Step
(Q) → Feed (R) → Retract (S)

Slot 2 Approach (A) → Feed (B) → Back (C) → Retract (D)
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Table 3. A list of process parameters

PPPPPPPPP
Process
Parameter

Trial

1 2 3 4 5 6 7 8 9 10 11 12

Feed rate (mm/tooth) 0.0005 0.0005 0.0005 0.0009 0.0005 0.0007 0.0007 0.0007 0.0007 0.0003 0.0006 0.0005

Spindle speed (RPM) 1500 2000 1750 1750 1750 1500 2000 2000 1750 1750 1750 1750

Cutting depth (mm) 1.5 1.5 1 1 2 1 1 2 1.5 1.5 1.5 1.5

measurement. Cutting width is fixed as the diameter of the cutting tool (8mm). The
MC parameters (operation, command, trajectory, and tool path) vary depending on the
machining configurations given by individual NC blocks.

3.2. Data acquisition. During actual machining, machine-monitoring data are gathered
through an MTConnect agent, i.e., software that receives and stores a time series of
data samples or events and acts as a bridge between a machine and a client application
[12]. Together, the process planning and NC programming data corresponded to the
machine-monitoring data are obtained. The process planning data include the technical
description for the experimental setup described in Section 3.1. The NC programming
data suitable for the numerical controller (Fanuc 0i) are created based on the process
planning data. Here, operation sequence describes sequential tool path movements along
with the execution of NC blocks. In the technical manners described in Section 2, data
pre-processing is performed to make clean and tidy training datasets.

3.3. Modeling. Machining time-predictive models are created using the training datasets
gathered by the technical descriptions in Section 2. The number of predictive models de-
pends on the types of tool path movements on individual machining features. In Table
2, for example, Profile 1 consists of seven predictive models: ‘App’, ‘Profile1-Yfeed-1’,
‘Profile1-XFeed-1’, ‘Profile1-Cfeed’, ‘Profile1-Yfeed-2’, ‘Profile1-XFeed-2’, and ‘Ret’ while
Pocket 1 comprises four models: ‘App’, ‘Pocket1-Feed’, ‘Pocket1-Step’, and ‘Ret’. Here,
the predictive models associated with ‘App’ and ‘Ret’ are identically applied in both Pro-
file 1 and Pocket 1 because they do not relate to machining features. Meanwhile, the rest
of the predictive models except those of ‘App’ and ‘Ret’ need to be differentially made
because their machining time largely depends on the types of machining features and tool
path movements. In other words, Equation (2) needs to be individually applied with re-
gard to each set of MC parameters. The following equations are the 2nd order polynomial
regression models for machining time prediction in Profile 1, Pocket 1, and Slot 2. It is
noted that we apply a −1-to-1 normalization to adjusting data scales for disperse data
distributions in feed rate, spindle speed and cutting depth.

{G01}: yt(App) = 0.711 − 0.022x1 + 0.0061x2
1 + 0.0417x2 − 0.055x2

2 − 0.233x3 + 0.265x2
3

{G01}: yt(Profile1-Yfeed-1) = 0.205 − 0.0628x1 + 0.035x2
1 − 0.0089x2 + 0.00164x2

2

− 0.00076x3 + 0.00208x2
3

{G01}: yt(Profile1-Xfeed-1) = 0.679 − 0.720x1 + 0.402x2
1 − 0.142x2 + 0.0611x2

2

+ 0.0195x3 − 0.011x2
3

{G02}: yt(Profile1-Cfeed) = 0.275 − 0.161x1 + 0.0919x2
1 − 0.0362x2 + 0.0182x2

2

+ 0.00826x3 − 0.00716x2
3

{G01}: yt(Profile1-Yfeed-2) = 1.043 − 0.763x1 + 0.261x2
1 − 0.188x2 + 0.0377x2

2

+ 0.00952x3 − 0.00617x2
3

{G01}: yt(Profile1-Xfeed-2) = 1.048 − 0.776x1 + 0.271x2
1 − 0.205x2 + 0.0624x2

2

+ 0.0088x3 − 0.00482x2
3

{G01}: yt(Pocket1-Feed) = 0.902 − 0.812x1 + 0.415x2
1 − 0.169x2 + 0.0670x2

2
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+ 0.0411x3 − 0.0313x2
3

{G01}: yt(Pocket1-Step) = 0.25 − 0.0777x1 + 0.0658x2
1 − 0.0126x2 + 0.00888x2

2

+ 0.00772x3 − 0.00663x2
3

{G01}: yt(Slot2-Feed) = 1.220 − 1.219x1 + 0.314x2
1 − 0.356x2 + 0.0611x2

2

− 0.0526x3 + 0.0592x2
3

{G01}: yt(Slot2-Back) = 1.191 − 1.0874x1 + 0.153x2
1 − 0.344x2 + 0.0573x2

2

− 0.0461x3 − 0.0546x2
3

{G01}: yt(Ret) = 0.437 − 0.000037x1 + 0.0000309x2
1 + 0.0000714x2 − 0.000072x2

2

+ 0.00034x3 − 0.0004x2
3

where x1: feed rate, x2: spindle speed, x3: cutting depth, yt: predicted machining time.

3.4. Model verification and validation. Model verification and validation is made by
comparing predicted machining time results with measured ones. Figure 4 visualizes the
predicted vs. measured machining time on the twelve trials with regard to individual
machining features. Here, the predicted machining time values are derived from the
application of the polynomial regression models above. Table 4 presents the result of
verification and validation. This table shows that the RMSE values on the twelve trials
score under 1.762 sec and the TRE values do absolute 29.9 percent on the individual
machining features at each trial.

Figure 4. Total measured time vs total predicted time on (A) Profile 1;
(B) Slot 2; (C) Pocket 1

Table 4. RMSE and TRE for measured vs. predicted machining time

Trial 1 2 3 4 5 6 7 8 9 10 11 12
RMSE (sec) 0.239 1.611 0.720 0.677 0.795 0.209 0.847 0.525 0.874 0.650 1.762 0.711

TRE
(%)

Profile 1 −1.85 5.07 −3.08 2.49 3.61 −3.06 −11.23 −0.84 −6.52 −2.86 −3.24 0.43
Pocket 1 −6.53 3.61 −13.63 0.9 0.99 −12.52 −14.13 12.72 −3.64 −11.14 −5.03 −4.32
Slot 2 −2.43 0.82 −9.52 −10.8 11.8 −8.8 −29.9 12.3 −7.13 −1.46 −5.5 −2.41
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4. Discussion.
(1) Prediction accuracy: The average value of TRE in Table 4 scores (−1.76%),

(−4.39%), and (−4.42%) on Profile 1, Pocket 1, and Slot 2, respectively. These results
show that our predictive models are acceptable to calculate the predicted machining time
values close to the actual measured values. However, Slot 2 has the highest TRE, which
means the predictive models for Slot 2 may have the lowest significance when they are
used to predict machining time. It comes from the lack of data due to shorter tool path
movements than them of Profile 1, Pocket 1, and thus datasets are not enough to create
acceptable models. The same case was shown in trial 7. Trial 7 contains the lowest size of
datasets, compared with the other trials. This high TRE gives an implication of the influ-
ence of the size of data being used on prediction. It is conjectured that our methodology
needs to consider sufficient data sizes when performing machine learning analysis.

(2) Data integration: our methodology starts from the assumption where every set of
MC parameters has its own operation sequence and different position and thus it has at
least one predictive model. Despite the uniqueness, we integrate separate approach and
retract models in different machining features into identical approach and retract models.
By using data integration, we can share common data for the approach and retract models
and put together into single models. The data integration will show an efficiency when
calculation burdens increase due to the increase in the number of NC blocks or predictive
models.

5. Conclusion. The purpose of the present work is to propose a model-driven predictive
analytics approach for machining time using historical machine-monitoring data. Based
on the proposed approach, we can create granular prediction models for gaining accurate
machining time anticipation on the tool path level along with tool path movements. Using
the real and historical machine-monitoring data, we generate accurate machining time pre-
dictive models using polynomial regression technique. Results on the applied approach
show that our approach can be acceptably used to increase the accuracy of machining
time prediction thereby enabling precise production and process planning. However, we
only focused on machining time prediction on a single machine within the boundary of
the given process planning. We do not deal with machining time optimization, which
eventually contributes to increasing production efficiency by providing optimal process
parameters for time minimization. The future works include: production time prediction
on a production line where various machines exist and run together in complex circum-
stances, and machining time optimization with minimum energy uses through deriving
optimal process parameters, which relates to multi-objective optimization problems.

Acknowledgment. This work was supported by a Research Grant of Pukyong National
University (C-D-2017-1264).

REFERENCES

[1] J. P. Hung, Y. L. Lai, T. L. Luo and H. H. Hsiao, Prediction of the dynamic characteristics of a
milling machine using the integrated model of machine frame and spindle unit, International Journal
of Mechanical and Mechatronics Engineering, vol.6, no.7, 2012.

[2] M. Albert, Modern Machine Shop, https://www.mmsonline.com/articles/getting-started-with-
machine-monitoring, [Access: 20-2-2018], 2016.

[3] S. J. Shin, J. Y. Woo and S. Rachuri, Predictive analytics model for power consumption in manu-
facturing, Procedia CIRP, vol.15, pp.153-158, 2014.

[4] Machining time, The Great Soviet Encyclopedia, 3rd Edition (1970-1979), The Gale Group, Inc.,
https://encyclopedia2.thefreedictionary.com/Machining+Time, [Access: 13-3-2018], 2010.

[5] R. T. Coelho, A. F. de Souza, A. R. Roger, A. M. Y. Rigatti and A. A. de Lima Ribeiro, Mechanistic
approach to predict real machining time for milling free-form geometries applying high feed rate,
International Journal Advanced Manufacturing Technology, vol.46, pp.1103-1111, 2010.



ICIC EXPRESS LETTERS, VOL.12, NO.11, 2018 1153

[6] H. Zhou, Y. Jiang, P. Zhou, M. Ji and Y. Zhao, Total completion time minimization scheduling on
two hierarchical uniform machines, Theoretical Computer Science, vol.702, pp.65-76, 2017.

[7] A. Pfeiffer, D. Gyulai, B. Kadar and L. Monostori, Manufacturing lead time estimation with the
combination of simulation and statistical learning methods, Procedia CIRP, vol.41, pp.75-80, 2016.

[8] M. Monreal and C. A. Rodriguez, Influence of tool path strategy on the cycle time of high-speed
milling, Computer Aided Design, vol.35, pp.395-401, 2003.

[9] S. J. Shin, J. Y. Woo and S. Rachuri, Energy efficiency of milling machining: Component modeling
and online optimization of cutting parameters, Journal of Cleaner Production, vol.161, pp.12-29,
2017.

[10] B. Malley, D. Ramazzotti and J. T.-Y. Wu, Chapter 12: Data pre-processing, in Secondary Analysis
of Electronic Health Records, Springer International Publishing, Cham, Switzerland, 2016.

[11] C. M. Salgado, C. Azevedo, H. Proenca and S. M. Vieira, Chapter 13: Missing data, in Secondary
Analysis of Electronic Health Records, Springer International Publishing, Cham, Switzerland, 2016.

[12] B. E. Lee, J. Michaloski, F. Proctor, S. Venkatesh and N. Bengtsson, MTConnect-based Kaizen for
machine tool processes, Proc. of ASME 2010 International Design Engineering Technical Conferences
& Computers and Information in Engineering Conference, Montreal, Canada, 2010.


