ICIC Express Letters ICIC International (©2018 ISSN 1881-803X
Volume 12, Number 11, November 2018 pp. 1155-1162

MAJOR SOFTWARE SECURITY RISKS AT DESIGN PHASE

JASLEEN KAUR*, ALKA AND RAEES AHMAD KHAN

Department of Information Technology
Babasaheb Bhimrao Ambedkar University (A Central University)
Vidya Vihar, Raebareli Road, Lucknow 226025, India
*Corresponding author: jasleenkaur.lmp@gmail.com

Received April 2018; accepted July 2018

ABSTRACT. In the present world of big data where each individual is highly concerned
about the security of their data, it becomes the basic responsibility of both academicians
and developers to manage the security issues in an efficient manner. In order to ef-
fectively address security, risk management needs to be considered as the key element.
Mostly, security is believed to be an add-on and not the fundamental issue during software
development. The authors have laid stress on considering security at initial developmen-
tal phases. This will prove to be beneficial in development of software that will itself be
able to fight against threats and not rely on any external application security program. In
the research work, the authors have identified some risks that are most likely to be intro-
duced during design phase from Common Weaknesses Enumeration (CWE) list. CWE
is sponsored by the National Cybersecurity FFRDC, which is owned by The MITRE Cor-
poration.

Keywords: Software security, Security risks, Design phase, Software development life
cycle, Object-oriented design properties

1. Introduction. In the present world, almost all of the services are being provided via
computers. There has been a significant increase in software deployment in almost every
field. This introduces an urgent need to address security issues as security failure may
lead to disastrous effects on human lives [1]. G. McGraw has already stated that security
is not the thing that can be sprayed onto any software after its development rather it
must be analyzed throughout the development phases [2]. This will help to build software
that will actually be able to defend itself from attacks despite being dependent upon any
application security software (say, antivirus) for its protection against threats. The basic
cause of the maximum of the security breaches is the presence of loopholes in the end
product. The early detection and correction of these ambiguities may help reduce the
occurrence of such attacks. The basic idea behind this research work is to identify the
security risks as early as possible and nib them in the bud itself. The security risks, if
removed from the design phase, will prove to be very helpful to build a secure and efficient
software. The design phase generally aims at prevention of introduction of defects [3].
So, in order to reduce the occurrence of security violations, it becomes indispensable to
address the security risks that exist at the design phase of software development life cycle.
The identification of the security risks that can be rectified at the initial phases will help
‘build’ security into the software.

Today, most of the researchers are emphasizing the idea of addressing the security issues
at the initial phases of software development life cycle. The early detection and correc-
tion of security risks is said to help deal with the prevalent security aspects in software
development [4]. P. T. Devanbu and S. Stubblebine [5] have stressed on consideration of
security issues at every phase of development life cycle. The authors have also outlined

DOLI: 10.24507 /icicel.12.11.1155

1155

1156 J. KAUR, ALKA AND R. A. KHAN

the idea of refining the requirement and design processes so as to shift the focus on initial
developmental levels. Baker et al. [6] have dragged the focus towards the lack of valid
methodology to quantify the effectiveness of the security measures. According to the
authors, it is not the scarcity of security methodologies that hinders the development of
secure software but the absence of proper quantification tools.

D. M. Mehta [7] has highlighted the idea of integrating security in the development
process. The author has also stated that the only thing that can help in development
of secure software is modifying the development life cycle. S. Gupta [8] has insisted on
the application of risk management strategies in the early stages of software development.
The author has also proclaimed that late risk management indirectly poses greater threats
to secure software development. Steps such as identification of threats, vulnerabilities and
determining the appropriate risk mitigation strategies at the design phase have also been
proposed by the researcher. B. Gray [9] has elaborated the role of a security analyst. The
author has talked about the importance of phase-wise implementation of security policies
and risk management during software development. A researcher has also provided a
design phase security checklist for developing a web application [10]. The checklist em-
phasizes on the security issues based on the principle of ‘Defense in Depth’. Through the
literature review it is evident that security, if considered at initial development phases
may result in comparatively more secure software. On the other hand, it is also obvious
that none of the researcher has identified or analyzed the security risks existing at the
early developmental phases. So, this research work may prove to be advantageous and
favorable towards secure software development.

The rest of the paper is organized as follows. Section 2 presents the need for security
risk identification at early stages and further in Section 3, the major security risks existing
at the design phase have been identified. Section 4 discusses the relation between security
risk and security factors. Finally, the research paper concludes in Section 5.

2. Need for Design Level Security Risk Identification. Security is widely known to
be a combination of two parts, viz., effective risk management and application of proper
countermeasures [25]. Risk assessment is widely accepted as an integral part of risk
management process. The risk assessment process is a complex procedure which consists
of the following sub-steps: identification of various risks; assessment of the vulnerabilities;
establishment of threats and their countermeasures; preparation of corrective action plan;
review and monitoring [26]. As the first step itself is the identification of the risks, it
becomes a prerequisite to pin down them. Also, the basic aim of risk assessment is to
provide apt security levels of a system by ranking the risk on the basis of severity of its
impact.

Additionally, the recognition of different security risks at design phase will help avoid the
loopholes that may pose a threat to security of the system in the future. If the design itself
is prepared in such a way that the security related risks are evaluated, then it may help
in reduction of time and money that is spent on application security software. Detecting
and rectifying bugs after development is found to be 100 times critical as compared to
considering them at the design phase [11]. Therefore, it is suggested to address the security
related risks at early stages of software development.

3. Major Security Risks at Design Phase. The researchers have selected the critical
risks based on the related security factor. Addressing security factors such as confiden-
tiality, access control, authentication, and integrity, has become a pre-requisite for secure
software development. Especially today, when each and every individual is primarily con-
cerned about the security of his data, it becomes the prime responsibility of the software
developers to effectively address them. Therefore, in this proposed work, the authors have

ICIC EXPRESS LETTERS, VOL.12, NO.11, 2018 1157

filtered the security risks that may penetrate into the software at design phase from Com-
mon Weaknesses Enumeration (CWE) list [12]. The CWE is a community that facilitates
the secure software development by providing a list of all possible weaknesses that may
occur in any software. It serves as a security tool by providing a standard for identification
and mitigation of various software weaknesses. The major design-level security risks, as
identified by the researchers, have been shown in Figure 1 and Table 1 shows the relation
of the security risks with the security factors along with risk-definition.

) Access to
Improperly ~_ | Critical Private |
Controlled W\ Variable via P i \
Modificationof |\ Public Method / B
. Dynamically- | \\H - (Conﬁglurat:on .\
_ Determined Object / — \ File ;
N ttributes /
= ~
External \ \‘"--—_-—"'\ \’/H_____--f
Initialization of \ /r’ Critical
\ Trusted Variables | Y N . Variable .
'\\ or Data Stores A) \ \ Declared Public
~_ J/
— < y, .
\ SECURITY RISKS AT / ~——
£ DESIGN PHASE
Concurrent Execution. //] MH\ Ve . \\.‘\ / Unverified
[using Shared Resource)—hﬂm = { I Password
| with Improper | y —— \ Change
\ Synchronization (Race/ / I \ \ y
S Condition) £ > _x o
~ i N——
" Download of Code : Ri;e Co:}dl:txn:; ‘
| without Integrity | | \| Ween a fread
s Check /" [Untrusted Search | //
S A Path] S
N /

FIGURE 1. Security risks at design phase

4. Relation between Security Risk and Security Factors. Risk refers to the po-
tential for loss or damage when a threat exploits vulnerability [24]. The risks which pose
danger to the security of the software can be categorized as ‘security risks’. In this sec-
tion, the authors have explained that why the identified risks are being termed as ‘security
risks” and the relation between the identified security risks and respective security factors
(Table 1) has also been illustrated below.

4.1. Access to Critical Private Variable via Public Method (ACPVPM). There
may be a possibility that any crucial attribute (variable) that has been declared as ‘pri-
vate’, can be accessed through any public method. This may occur because of the non-
compliance of proper methods for access control at design phase. Consequently, it may
lead to the non-observance of the suppositions of other parts of the code. Also, if an
attacker is able to access any private variable, then it may lead to leakage of any sensitive
information. Consequently, it will affect the integrity of the code. For example:

private: int age;

public:

void UpdateAge (int age)

{

cout << “Update your age”;

cin >> age;

}

In the above example, ‘age’ has been declared as private but it is being accessed from
a public function for its updation.

1158 J. KAUR, ALKA AND R. A. KHAN
TABLE 1. Security risks and related security factor
Security risk at L Related secu-
S. No. design phase Definition rity factor
Access to Critical
1 Private Variable via A pUbh,C method' that can read or mod- Access control;
Public Method [12] ify a private variable is defined by the Integrity
(ACPVPM) software [13].
Password in Con- | Password is stored in the configuration o
2 figuration File [12]|file, thereby making it prone to be mis- Authentication;
(PCF) used by any outsider [14]. Access control
Critical Variable Any critical variable/field is declared L
3 Declared Public [12] | as public when intended security policy Conﬁqentlahty;
(CVDP) requires it to be private [15]. Integrity
4 Unverified Password }\IO authe.ntlcatl‘on mechanism is fol- Authentication;
owed while setting a new password for
Change [12] (UPC) | " . [16]. Access control
If any resource is being used simultane-
Race Condition wi- | ously, then there exists the possibility
5 thin a Thread [12]|that resources may be used while in- | Integrity
(RCT) valid and consequently making the ex-
ecution state undefined [17].
An externally-supplied search path is| Confidentiality;
6 Untrusted Search being used for critical resources that | Integrity;
Path [12] (USP) can point to resources that are not un- | Availability;
der the application’s direct control [18]. | Access control
An executable source code is down-
Download of Code loaded from any remote location with- | Integrity;
7 | without Integrity : Y T .) gLy
out checking the origin and integrity of | Confidentiality
Check [12] (DCIC) the code [19].
The program contains a code sequence
Concurrent execu- | that can run concurrently with other
tion using shared re- | code, and the code sequence requires
3 source with im- | temporary, exclusive access to a shared | Integrity;
proper synchroniza- | resource, but a timing window exists in | Confidentiality
tion which the shared resource can be mod-
(‘Race Condition’) |ified by another code sequence that is
[12] (RC) operating concurrently [20].
External Initializa- | The software initializes critical inter-
9 tion of Trusted Vari- | nal variables or data stores using in- Integrit
ables or data stores | puts that can be modified by suspicious M
[12] (EITV) actors [21].
Hg (?r&ie;ilgci?;ﬁrgf If the object contains attributes that
10 | Dynamically-deter- | Ve only intended for internal use, Integrity
. . . [then their unexpected modification
mined object attri- pected
butes [12] (ICMD) could lead to vulnerability [22].

ICIC EXPRESS LETTERS, VOL.12, NO.11, 2018 1159

4.2. Password in Configuration File (PCF). The configuration files are the files
that are used by the developers to manipulate the settings without recompilation and
by administrators to set policies regarding various applications running on a computer
system [23]. The designer should be very careful that the software does not store any
kind of password in the configuration files. This may lead to a security breach where any
non-legitimate user gains the password thereby affecting authentication. This risk also
poses danger to access control if the password gets changed by the attacker.

4.3. Critical Variable Declared Public (CVDP). The public declaration of any crit-
ical variable/field that should necessarily be declared private, as per security policies (say,
password) is referred as a security risk. It may act as a threat to confidentiality when the
information attached to this kind of attribute is read by any non-legitimate user and to
integrity if that information is further modified by the attacker. For example:
class login
{
public:
credentials(char *UID, char *password)
{
if((strlen(UID)>MazxLength-1)|| (strlen(password)> MaxPassword-1))
cout<< “Invalid UID or password”;
else {
strepy(this— UID, UID);

strepy(this— password, password);

int authenticate(char *UID, char *password)
if((strlen(UID)>MazLength-1)|| (strlen(password)>MazxPassword-1))
cout< < “Invalid UID or password”;
else {
stremp (this— UID, UID);
stremp (this— password, password);
return 0;
else
return 1;

char UID[MazLength];
char password[MaxPassword];

}

In the given example, the member variables UID and password are declared public and
therefore will allow access and modifications privilege to anyone with access to the object.

4.4. Unverified Password Change (UPC). The unverified modification of password
may serve as a threat to authentication and access control. Authentication is believed to
be overlooked if while setting the new password, the software does not demand previous
password, or any other kind of authentication. The non-consideration of authentication
factor consequently makes room for access control vulnerability. The password, if changed
by non-legitimate user, may limit the valid user from accessing the information. While
the software confirms the changed password twice, it should also check that the password
is being changed by the authorized user or not.

4.5. Race Condition within a Thread (RCT). This condition is said to occur when
two or more threads try to access a shared memory location and make an attempt to
change it simultaneously. It may hinder the integrity of the application if any value being

1160 J. KAUR, ALKA AND R. A. KHAN

used currently is changed by any other piece of code at the same time. The mitigation
scheme of this type of risk is believed to be ‘locking’. Proper locking mechanism is assumed
to help by preventing the usage of shared memory location at the same point of time.
Usage of flags or signals may also prove to be beneficial in this case.

4.6. Untrusted Search Path (USP). This type of risk may occur when the application
allows access to the critical sources through any externally-supplied search path. For
example, if any search URL contains the primary key (say, User ID) and just altering the
same allows the user to access another user’s profile without permission. If the attacker
tries to modify the content, the integrity of the system may also get damaged. The
availability is put to risk if the attacker redirects the application to wrong files or compels
the software to crash or hang. If the result of any query is directed towards a non-
legitimate user, then the confidentiality is said to get affected. Therefore, this risk directly
poses danger to confidentiality, availability, access control and integrity of the software.

4.7. Download of Code without Integrity Check (DCIC). There may be a possi-
bility that the software allows the downloading of code from any remote location without
checking the authenticity of the source. The pressure to reduce the time-to-market exists
on the developers which consequently increases the chances of software updation through
mobile code. Therefore, it should be the prime condition to make a check on the validity
of the source. The avoidance in testing the legitimacy of the source may affect the con-
fidentiality and integrity of the application. If the malicious code downloaded from any
unknown source tends to change the working of the software, then integrity is put to risk
and if the critical details get leaked, then confidentiality is believed to get hampered.

4.8. Concurrent execution using shared resource with improper synchroniza-
tion (‘Race Condition’) (RC). The ‘Race Condition’ is said to occur when the appli-
cation contains a piece of code that can run simultaneously with another code section. It
should be strictly followed that no processes are able to share the same memory location
except for the case that all of them only need to read the data from that particular lo-
cation and none of them needs to update it. The security risk because of race condition
occurs when the shared code is about the access of a critical resource. In such a case, it
may be a possibility that the intruder accesses or overwrites a critical data, which in turn
may affect integrity and confidentiality of the data source.

4.9. External Initialization of Trusted Variables or data stores (EITV). The
developers need to strictly adhere to the fact that if any variable gets initialized externally,
then its improper initialization may lead to an increase in security vulnerability of the
software. The unexpected initialization may lead to an abrupt response from the software.
Similarly, the blind input to the data stores may also introduce flaws. It may therefore be
concluded that this security risk poses direct danger to integrity of the software system.

4.10. Improperly Controlled Modification of Dynamically-determined object
attributes (ICMD). It may happen to be that the inputs to the attributes of any
object are governed by an upstream component. This condition may lead to serious
security vulnerabilities such as mass-assignment, and object-injection [22]. The possible
methods to cope up with such kind of risk include the separation of object attributes as
accessible and protected or association of an authentication code to the deserialized data
at the time of storage.

5. Conclusion and Future Work. The old proverb, “Prevention is better than cure”,
very aptly describes the fundamental issue being emphasized by the authors. If the
security issues are tackled at their budding phase, then it will greatly help in reduction of
security violations. The proactive approach to development of secure software needs to be

ICIC EXPRESS LETTERS, VOL.12, NO.11, 2018 1161

prioritized. It is expected that if the detection of any loophole is done at the initial level,
then it may consequently lead to more efficient and secure software. In the present world,
where almost everything is being digitized, the use of object-oriented technology tends to
increase automatically. The security aspect cannot be overlooked at the same time. So, in
future if these security risks are linked to the object-oriented design properties, then it may
prove to be very helpful for secure software development. Further, the quantification of
relation of these risks with object-oriented design properties may provide the researchers
with their accurate interdependence. The exact mutual dependability can further be
utilized to develop a secure, efficient and reliable software.

Acknowledgement. This work is sponsored by UGC-MRP, New Delhi, India under F.
No. 43-391/2014 (SR).

REFERENCES

[1] H. de Bruijn and M. Janssen, Building cybersecurity awareness: The need for evidence-based framing
strategies, Government Information Quarterly, vol.34, no.1, pp.1-7, 2017.

[2] G. McGraw, Software Security: Building Security In, Addison-Wesley Professional, 2006.

[3] R. K. Choudhary and R. A. Khan, Testing software fault tolerance techniques: Future direction,
ACM SIGSOFT Software Engineering Notes, vol.36, no.3, pp.1-5, 2011.

[4] Software Integrity, https://www.synopsys.com/blogs/software-security /secure-sdle/, 2017.

[5] P. T. Devanbu and S. Stubblebine, Software engineering for security: A roadmap, Proc. of the
Conference on the Future of Software Engineering, Limerick, Ireland, pp.227-239, 2000.

[6] W. Baker, L. Rees and P. Tippett, Necessary measures: Metric-driven information security risk
assessment and decision making, Communications of the ACM, vol.50, no.10, pp.101-106, 2007.

[7] D. M. Mehta, Effective Software Security Management, OWASP, https://www.owasp.org/images
/2/28 /Effective_Software_Security_Management.pdf, 2017.

[8] S. Gupta, A Proactive Approach to Information Security, SANS Institute InfoSec Reading Room,
https://www.sans.org/reading-room/whitepapers/securecode/proactive-approach-toinformation-sec
urity-1416, 2003.

[9] B. Gray, The Role of the Security Analyst in the Systems Development Life Cycle, SANS Institute
InfoSec Reading Room, https://www.sans.org/reading-room/whitepapers/awareness/role-security-
analyst-systems-development-life-cycle-1601, 2005.

[10] G. Z. Bayse, A Security Checklist for Web Application Design, SANS Institute InfoSec Read-
ing Room, https://www.sans.org/reading-room/whitepapers/securecode/security-checklist-web-app
lication-design-1389, 2004.

[11] B. Boehm and V. R. Basili, Software Defect Reduction Top 10 List, https://www.cs.umd.edu/
projects/SoftEng/ESEG /papers/82.78.pdf, 2017.

[12] Weaknesses Introduced during Design, https://cwe.mitre.org/data/definitions/701.html, 2017.

[13] CWE-767: Access to Critical Private Variable via Public Method, https://cwe.mitre.org/data/defi-
nitions/767.html, 2017.

[14] CWE-260: Password in Configuration File, https://cwe.mitre.org/data/definitions/260.html, 2017.

[15] CWE-766: Critical Variable Declared Public, https://cwe.mitre.org/data/definitions/766.html,

2017.

| CWE-620: Unverified Password Change, https://cwe.mitre.org/data/definitions/620.html, 2017.

] CWE-366: Race Condition within a Thread, https://cwe.mitre.org/data/definitions/366.html, 2017.

| CWE-426: Untrusted Search Path, https://cwe.mitre.org/data/definitions/426.html, 2017.

| CWE-494: Download of Code without Integrity Check, https://cwe.mitre.org/data/definitions/494.

html, 2017.

[20] CWE-862: Concurrent Execution Using Shared Resource with Improper Synchronization (‘Race Con-
dition’), https://cwe.mitre.org/data/definitions/362.html, 2017.

[21] CWE-454: External Initialization of Trusted Variables or Data Stores, https://cwe.mitre.org/data/
definitions/454.html, 2017.

[22] CWE-915: Improperly Controlled Modification of Dynamically-Determined Object Attributes, https:
//cwe.mitre.org/data/definitions/915.html, 2017.

[23] Configuration Files, https://msdn.microsoft.com/en-us/library/1xtk877y(v=vs.100).aspx, 2017.

[24] IT Security Vulnerability vs Threat vs Risk: What’s the Difference?, http://www.bmc.com/blogs
/security-vulnerability-vs-threat-vs-risk-whats-difference/, 2017.

1162 J. KAUR, ALKA AND R. A. KHAN

[25] Chapter 1 — Web Application Security Fundamentals, https://msdn.microsoft.com/en-us/library/
ff648636.aspx, 2017.
[26] IT Risk Assessment, https://www.happiestminds.com/whitepapers/IT-risk-assessment.pdf, 2017.

