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Abstract. Semi-parametric trending panel data models can separate the nonlinear trend
of variables to reflect the nonlinear characteristics of time variable and non-parametric
time-varying coefficient panel data models can reflect the model’s parameters variation
with the time through the varying coefficient function. This paper analyzes the two mod-
els through the model specification, estimation methods and Monte Carlo simulation.
The results show that it is necessary to choose suitable models to analyze the economic
problems and summarize the economic regulation combining with the feature of data and
economic theory in the complex economic phenomenon.
Keywords: Semi-parametric trending panel data models, Time-varying coefficient mod-
els, Monte Carlo simulation

1. Introduction. Semi-parametric models are the most important statistical models in
statistics which have the interpretability of the parameter part and the flexibility of the
non-parametric part. Since they were introduced, they have been widely concerned in
the field of statistics [1-4]. In many empirical problems, the semi-parametric regression
model can be much closer to the real situation and can make full use of the information
contained in the data. Chen et al. [5] first propose semi-parametric trending panel data
models with cross-sectional dependence which can reflect the variation of variables by
separating the nonlinear time trend of the model. There is another model proposed by Li
et al. [6] which can reflect the nonlinear characteristics of the model and the parameter
of the model is a varying coefficient function. Varying coefficient model is very popular
in statistics. Silvapulle et al. [7] use local linear method to estimate time-varying trend
or time-varying coefficient function. Zhou et al. [8] use the vector autoregressive model
and the least square support vector machine to estimate the parameters of the linear
time-varying structure system.

There is a rich literature on analyzing the realistic economic problems using the two
models [9,10]. Two models have some similarities: not only the models but also explana-
tory variables contain nonlinear time trend. They also have some differences: parameters
of the semi-parametric trending panel model are fixed. However, in addition to the non-
linear time trend, coefficients of the parameter partial of the non-parametric time varying
coefficient model are varying with time. Both models have their own characteristics and
are widely used. If we use inappropriate models to analyze the data of the problems, we
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will get wrong conclusions in the complex economic problems. Therefore, it is necessary
to compare and analyze the two models. This paper compares the similarities and dif-
ferences between the two models by model specification, estimation methods and Monte
Carlo simulation. By comparison, we can find some differences between the two models
under the same data. We need to use appropriate models to analyze the different data
generation processes. There are some similarities and differences between the two models.
However, as far as we know very few research has been done in the comparative analysis.
In the complexity of real data, the innovation of this paper is comparing the two mod-
els from three aspects and providing a theoretical foundation for the application of the
models.

This paper is organized as follows. In Section 2 and Section 3 the model specification of
semi-parametric trending panel data models and non-parametric time-varying panel data
models are discussed. In Section 4 the simulation results of the different data generating
progress are presented. Finally, Section 5 concludes the paper.

2. Semi-Parametric Trending Panel Data Models and Its Estimation Methods.
The model we consider in this paper which is proposed in [5] is semi-parametric trending
panel data model of the form:

Yit = Xitβ + ft + αi + eit (1)

Xit = gt + xi + vit (2)

where Xit = (X1t, X2t, . . . , Xpt) are P-dimension vector of explanatory variables, and
β = (β1, β2, . . . , βp)

T are P-dimension vector of unknown parameters. ft = f(t/T ), gt =
g(t/T ) are both time trend functions with f(·), g(·) being unknown, and both {eit},
{vit} are independent and identically distributed (i.i.d) across time but correlated among
individuals. {αi} is allowed to be correlated with {Xit} through some unknown structure,
while {eit} is assumed to be independent of {vit}. In the above models, we impose the
following restrictions on the fixed effects {αi} and the individual effects {xi}.

N∑
i=1

αi = 0 (3)

N∑
i=1

xi = 0p (4)

where 0p is the P-dimension null vector. In model (1), Yit is non-stationary variable which
contains the nonlinear time trend, but the coefficients of the model are constants. Models
(1) and (2) cover and extend some existing models. When β = 0, model (1) reduces to
the non-parametric model discussed in [11]. When N = 1, models (1) and (2) reduce to
the models discussed in [12].

The estimation method of semi-parametric trending panel data models is introduced
in [5]. This paper developed a pooled semi-parametric profile likelihood dummy variable
approach based on the first-stage local linear fitting to estimate both the parameter vector
and the non-parametric time trend function. The authors defined a loss function by using
the kernel function as a weighted function to get the parameter estimator and time trend
through minimizing the loss function.

3. Non-Parametric Trending Time-Varying Coefficient Panel Data Model and
Its Estimation Methods. The other model we consider in this paper which is proposed
in [6] is non-parametric trending time-varying coefficient panel data model of the form:

Yit = Xitβt + ft + αi + eit, i = 1, . . . , N, t = 1, . . . , T (5)

Xit = gt + xi + vit (6)
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where Xit = (Xit,1, Xit,2, . . . , Xit,p), βt = (βt,1, βt,2, . . . , βt,p), all βt and ft are unknown
functions, αi reflects unobserved individual effect and {eit} is stationary and weakly de-
pendent for each i and independent of {Xit} and αi. T is the time series length and N is
the cross section size. In model (5), Yit is non-stationary variable which contains the non-
linear time trend and the coefficients of the model are varying with the time. This is the
difference with the model (1). Model (5) is called a fixed effects model when αi is allowed
to be correlated with {Xit} through some unknown structure. And it is called random-
effects model when αi is uncorrelated with {Xit}. For the purpose of identification, we

assume that αi satisfies
∑N

i=1 αi = 0.
The estimation method of non-parametric trending time-varying coefficient panel data

model is introduced in [6]. This paper develops two methods to estimate the trend func-
tion and the coefficient function without taking the first difference to eliminate the fixed
effects. The first one eliminates the fixed effects by taking cross-sectional averages, and
then uses a non-parametric local linear approach to estimate the trend function and the
coefficient function. The second one is pooled local linear dummy variable approach.
This is motivated by a least squares dummy variable method proposed in parametric
panel data analysis. This method removes the fixed effects by deducting a smoothed
version of cross-time average from each individual.

There are some similarities and differences of the estimations methods between the two
models. Because the second model has two estimation methods, we will describe them
respectively among the two models. For the similar part, firstly, all methods of the models
use the kernel function as weighted function. Secondly, we get the parameter estimator
and trend function directly through minimizing corresponding function for the method of
the first model and the first method of the second model.

For the different part, the first method of the second model eliminates the fixed effects
by taking cross-sectional averages and the second method of the second model removes the
fixed effects by deducting a smoothed version of cross-time average from each individual.
Moreover, the second method of the second model uses a non-parametric dummy variable
technique for the model and then applies the two-step algorithm for the local linear dummy
variable method.

4. Monte Carlo Simulation. In this part, we verify the different estimation results of
the two models through the Monte Carlo simulation under the different data generation
process. Firstly, we use the two models to analyze the data which is generated by semi-
parametric trending panel data models. Secondly, we use the two models to study the
data which is generated by non-parametric time-varying coefficient panel data models.

4.1. Data generating process. Consider a panel data model of the form:

Yit = Xitβt + ft + αi + eit, 1 ≤ i ≤ N, 1 ≤ t ≤ T (7)

Assume that, Xit is one-dimension vector, f(u) = 2u3+u, αi = 1
T

∑T
i=1 Xit, i = 1, . . . , N−

1, αN = −
∑N−1

i=1 αi. The error terms eit are generated as follows: for each 1 ≤ t ≤ T , let
ẽ.t = (e1t, e2t, . . . , eNt) which is an N-dimensional vector and e.t (1 ≤ t ≤ T ) is generated as
an N-dimensional vector of independent Gaussian variables with zero mean and covariance
matrix cij = 0.8|j−i|, 1 ≤ i, j ≤ N . From the way eit are generated. It is easy to see that

E(eit, ejs) = 0, 1 ≤ i, j ≤ N, t ̸= s,

E(eit, ejt) = 0.8|j−i|, 1 ≤ i, j ≤ N, 1 ≤ t ≤ T

The above equations imply that {eit} is cross-sectional dependent and time independent.
The explanatory variables Xit are generated by Xit = g(t/T ) + xi + vit, 1 ≤ i ≤ N ,

1 ≤ t ≤ T . xi : U(−0.2, 0.2), xN = −
∑N−1

i=1 xi, {vit} is independent of {eit} and
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is generated in the same way as {eit} but with a different covariance matrix (dij)N×N ,
where dij = 0.5|j−i| for 1 ≤ i, j ≤ N .

In order to compare the two models, we set β with two forms in our simulation. One
is constant which is generated in the form of semi-parametric trending panel data models
and the other varies with the time that is generated in the form of non-parametric time-
varying panel data models. In different forms, we use two models mentioned above to
study the differences of the estimators of the two models.

4.2. Monte Carlo simulation results. To evaluate the effectiveness of the two models,
the simulation studies are carried out in the different data generation progress. Firstly,
we analyze the data which is generated as the form: Yit = Xitβ + ft + αi + eit, where β is
constant in the data generation process in this model. We next compare two estimation
methods of the two models. The results are given in Table 1 and Table 2.

Secondly, we analyze the data which is generated as the form: Yit = Xitβt +ft +αi +eit,
where βt = 0.5∗(t/T ) is time function, T = 5, that is, β = (0.1, 0.2, 0.3, 0.4, 0.5). We next
compare two classes of estimation methods. The results are given in Table 3 and Table 4.

Table 1. Semi-parametric trending panel data models estimation (β is constant)

True value N\T 5 10 20 30

β = 0.1

10
0.1007

(0.3672)
0.0972

(0.2057)
0.0988

(0.1300)
0.1037

(0.0998)

20
0.1011

(0.2047)
0.1020

(0.1344)
0.0998

(0.0855)
0.1003

(0.0619)

30
0.0966

(0.2006)
0.1012

(0.1087)
0.1008

(0.0684)
0.1006

(0.0540)

40
0.1027

(0.1421)
0.0996

(0.1089)
0.0999

(0.0570)
0.10053
(0.0505)

50
0.0961

(0.1338)
0.1009

(0.0877)
0.1010

(0.0315)
0.0999

(0.0430)

β = 1.0

10
1.0070

(0.1869)
1.0018

(0.0922)
0.9924

(0.0645)
0.9991

(0.0514)

20
1.0075

(0.1429)
1.0010

(0.0663)
0.9997

(0.0449)
1.0008

(0.0357)

30
0.9962

(0.0960)
0.9980

(0.0551)
0.9994

(0.0366)
0.9995

(0.0289)

40
0.9980

(0.0910)
0.9952

(0.0535)
0.9989

(0.0325)
0.9996

(0.0243)

50
0.9981

(0.0816)
0.9969

(0.0425)
0.9959

(0.0298)
1.0018

(0.0207)

β = 2.0

10
2.0043

(0.3778)
1.9992

(0.2262)
1.9953

(0.1394)
2.0015

(0.1078)

20
2.0104

(0.23697)
1.9957

(0.1472)
2.0010

(0.0936)
2.0005

(0.0726)

30
2.0034

(0.1566)
2.0003

(0.1184)
1.9950

(0.0746)
1.9979

(0.0588)

40
2.001

(0.2350)
2.0055

(0.1096)
1.9999

(0.0554)
2.0016

(0.0490)

50
1.9963

(0.1771)
2.0009

(0.0732)
1.9986

(0.0542)
2.0008

(0.0460)
Note: Means and SDs of estimators
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Table 2. Non-parametric time-varying coefficient model estimation (T = 5)

True value N\β β1 β2 β3 β4 β5

β = 0.1

10
0.0686

(3.4785)
0.0642

(1.9163)
0.0597

(0.8610)
0.0552

(0.3125)
0.0508

(0.2708)

20
0.0424

(1.6033)
0.0648

(0.8607)
0.0785

(0.3723)
0.0965

(0.1379)
0.1146

(0.1576)

30
0.0578

(1.4289)
0.0753

(0.7820)
0.0928

(0.3504)
0.1104

(0.1341)
0.1279

(0.1331)

40
0.1240

(1.0098)
0.1246

(0.5625)
0.1252

(0.2593)
0.1258

(0.1002)
0.1264

(0.0851)

50
0.0708

(0.8235)
0.0839

(0.4521)
0.0970

(0.2043)
0.1101

(0.0803)
0.1232

(0.0799)

β = 1.0

10
1.0753

(3.4789)
1.0438

(1.9909)
1.0123

(0.9657)
0.9809

(0.4032)
0.9494

(0.3036)

20
0.9935

(2.1615)
0.9961

(1.1522)
0.9987

(0.4892)
1.0013

(0.1726)
1.0039

(0.2024)

30
0.7625

(1.3208)
0.8072

(0.7261)
0.8518

(0.3331)
0.8965

(0.1418)
0.9411

(0.1523)

40
0.8286

(0.8377)
0.8727

(0.4818)
0.9169

(0.2348)
0.9610

(0.0968)
1.0052

(0.0679)

50
1.2425

(0.7728)
1.1957

(0.3861)
1.1489

(0.1444)
1.1021

(0.0477)
1.0554

(0.0961)

β = 2.0

10
2.0531

(3.5169)
2.0366

(1.9478)
2.0201

(0.8878)
2.0036

(0.3369)
1.9871

(0.2953)

20
1.9661

(1.9549)
1.9704

(1.0796)
1.9746

(0.4911)
1.9789

(0.1893)
1.9831

(0.1744)

30
1.9901

(1.2099)
1.9868

(0.6612)
1.9836

(0.2958)
1.9803

(0.1135)
1.9771

(0.1144)

40
2.0328

(1.0569)
2.0261

(0.5749)
2.0193

(0.2551)
2.0126

(0.0974)
2.0059

(0.1020)

50
2.0583

(0.8585)
2.0410

(0.4739)
2.0238

(0.2159)
2.0066

(0.0845)
1.9893

(0.0797)
Note: Means and SDs of estimators

Table 3. Semi-parametric trending panel data models estimation (β is
time-varying)

N\T T = 5 T = 10 T = 20 T = 30 T = 40

N = 10
0.3376

(0.2328)
0.3004

(0.2013)
0.2718

(0.1058)
0.2580

(0.0960)
0.2595

(0.0891)

N = 20
0.3073

(0.1723)
0.2860

(0.1180)
0.2739

(0.0763)
0.2624

(0.0654)
0.2603

(0.0529)

N = 30
0.3321

(0.1454)
0.2830

(0.0980)
0.2696

(0.0455)
0.2620

(0.0390)
0.2600

(0.0408)

N = 40
0.3110

(0.1720)
0.2843

(0.0917)
0.2710

(0.0476)
0.2634

(0.0343)
0.2608

(0.0371)

N = 50
0.3228

(0.1331)
0.2909

(0.0680)
0.2700

(0.0491)
0.2602

(0.0355)
0.2589

(0.0330)
Note: Means and SDs of estimators
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Table 4. Non-parametric time-varying coefficient model estimation (T = 5)

T N\β β1 = 0.1 β2 = 0.2 β3 = 0.3 β4 = 0.4 β5 = 0.5

T = 5

10
0.1167

(3.5208)
0.2229

(1.9168)
0.3290

(0.8481)
0.4351

(0.3145)
0.5412

(0.3162)

20
0.1274

(1.7534)
0.2259

(0.9598)
0.3245

(0.4293)
0.4230

(0.1618)
0.5216

(0.1572)

30
0.0985

(1.3339)
0.1947

(0.7216)
0.2909

(0.3163)
0.3872

(0.1178)
0.4835

(0.1263)

40
0.1114

(1.0528)
0.2023

(0.5792)
0.2931

(0.2622)
0.3840

(0.1018)
0.4749

(0.0981)

50
0.1087

(0.8599)
0.2078

(0.5050)
0.3069

(0.4729)
0.4059

(0.4729)
0.5050

(0.0782)
Note: Means and SDs of estimators

From the results of Tables 1-4, we can find that both models can reflect similar char-
acteristics under different data generation process. Firstly, parameter estimator varies
stably with the sample quantity varying. Secondly, for the fixed period, increasing the
quantity of the individual can reduce the standard deviation of the parameter estimator.
Thirdly, for the fixed individual, increasing the quantity of period can reduce the standard
deviation of the parameter estimator.

However, both models have the different characteristics from each other. Firstly, semi-
parametric trending panel data models can reflect the nonlinear characteristics by sep-
arating time trend to improve the effect of parameter estimation of the model and the
parameters in the model are fixed in this progress. Secondly, non-parametric time-varying
coefficient models reflect the nonlinear characteristics through variation of the parameters
and the parameters of the model vary with the time. Thirdly, the estimators of the time-
varying coefficient models are not good as semi-parametric trending panel data model
under the data generated by semi-parametric trending panel data model. In a similar
way, the estimators of the semi-parametric trending panel data model are not good as
time-varying coefficient models under the data generated by non-parametric time-varying
coefficient.

5. Conclusions. We have compared two models through model specification, estimation
methods and simulation. From the simulation results we can find that two models have
both similarities and differences. For the similar part, increasing the quantity of the time
or the individual can reduce the standard deviation of the parameter estimator. For
the different part, semi-parametric trending panel data models can reflect the nonlinear
characteristics by separating time trend to improve the effect of parameter estimation of
the model and the parameters of the model are fixed in this progress. In contrast, non-
parametric time-varying coefficient models reflect the nonlinear characteristics through
variation of the parameters and time trend, and the parameters of the model vary with the
time. In the empirical analysis, we need to choose suitable models to analyze economic
phenomena and summarize the economic law combining with the feature of data and
economic theory.
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