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Abstract. We address the issue of reliability of F -statistic method for predicting the
structural integrity on the basis of the vibration data. The method is traditional but to
the best of the author’s knowledge, its weaknesses and reliability have not been explored.
As this work demonstrates, the use of the method often leads to false-positive predictions,
where intact structures are predicted to be damaged, and false-negative predictions, where
damaged structures are predicted to be intact. We claim the use of the statistic in con-
junction with a linear classification model should improve the prediction accuracy. To
demonstrate the claim, 17494 examples of data are established from a numerical simula-
tion of a seven-degree-of-freedom model, which is widely studied in the field of structural
health monitoring. Then, the data are divided into two groups with the ratio of 70:30 for
model development and testing. A linear classification model is established by minimizing
a combination of a hinge loss function and a regularization loss function. An optimal
regularization parameter is also determined. The present approach is able to increase the
classification accuracy by about 10%.
Keywords: Structural health monitoring, F -statistic, Support vector machine

1. Introduction. On Nov. 26, 2011, at 16:20 local time, 10-year-old Kutai Kertanegara
bridge in Samarinda, Indonesia, suddenly collapsed (Figure 1). As the results, 24 persons
died, 39 injured, and 12 were missing. It also took down dozens of cars and motor
vehicles [1]. On July 3, 2014, in Belo Horizonte, Brazil, a fly-over broke down instantly,
killed two persons, and injured 22 [2]. We often heard engineering structures collapse
catastrophically due to overloads, abrasion, or erosion [3], but most often, corrosion, metal
fatigue, and overload were the culprit according to a study involving 6000 accidents [4]
(Table 1).

Most structures require regular monitoring either manually or automatically by using
a system (SHM). Manual inspection is susceptible to human errors and unreliable [3].
Small-size cracks, the most common cause of aircraft failure [5], often go undetected. SHM
system has the potential to provide reliable, accurate, and low-cost monitoring system.
SHM has been widely applied to rotating machineries [6, 7], aircraft structures [8, 9],
bridges [10, 11], and railways [12, 13, 14].

For SHM system to work, data acquired from structure, from which damage sensitive
features are derived, and predictive models where the features are linked to structural
integrity should be provided. So far, scientists have utilized neural networks [16, 17, 18, 19]
or support vector machine [20, 21] to establish the predictive models, and have used
vibration data to provide damage sensitive features such as natural frequencies and mode
shapes [24, 25, 26, 27, 28, 29], modal curvatures [30, 31, 32], modal strain energies [33],
spectral moments [9, 34], and time series [35].
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Figure 1. The collapsed Kutai Kertanegara bridge [1]

Table 1. The frequency of various failure mechanisms [4]

Percentage of failures
Engineering components Aircraft components

Corrosion 29 16
Fatigue 25 55
Brittle fracture 16 −
Overload 11 14
High temperature corrosion 7 2
SCC/corrosion fatigue/HE 6 7
Creep 3 −
Wear/abrasion/erosion 3 6

In the vibration-based SHM, F -statistic is known to be damage sensitive [40], easy to
compute, and had been experimentally verified [41]. However, its reliability, the rate of
false classifications where a healthy structure is detected as damaged and vice versa, has
not been addressed. This research investigates the level of the reliability that can be
achieved by the use of F -statistic in an idealized condition and a method to improve the
reliability.

This article is organized as the following. Section 2 presents the research procedure
including the data collection method, feature extraction method, and the linear support
vector machine (SVM). Section 3 presents the distributions of the F -statistic and the
classification reliability with and without SVM. Section 4 presents the most important
findings of the work.

2. Research Methods.

2.1. Data collection method. Data are produced by a numerical analysis of a seven-
degree-of-freedom system (Figure 2). The system consists of seven lumped masses, 1 kg
each, connected by eight similar linear elastic springs, each has 1 N/m stiffness. A dynamic
force having a random magnitude is applied to the center mass. The force magnitude

Figure 2. The model of seven-degree-of-freedom system
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is drawn from a normal probabilistic distribution with a mean of zero and a standard
deviation of 0.09. Initially, the random force data have frequency contents up to 25 Hz.
Then, the data are filtered with a Butterworth filter with a cutoff frequency of 20 Hz and
an order of 12.

The structural damage is assumed to occur on the spring connecting m3 and m4. It
is also assumed to affect the spring and to degrade its stiffness only. Four levels of
the degradation are studied, namely, 1%, 5%, 10%, and 20%. This decision is made to
understand how the damage level affects the accuracy of the classification. We hypothesize
that the classification accuracy is low when the damage level is low, the relation between
the classification accuracy and the damage level is not linear, and when the damage level
is higher than certain threshold, the classification accuracy is independent to the damage
level.

The analysis results are the displacement of the seven masses. The data are sampled
at a constant rate of 0.1 s and for a duration of 360 s. For each structural condition, the
analysis is repeated for 500 times by varying the distribution of the dynamic force. The
settings of the applied dynamic force and the sampling rate of the structural responses
are determined by considering the structure natural frequencies: 0.62, 1.22, 1.77, 2.25,
2.65, 2.94, and 3.12 in Hz. The frequencies ω are determined by solving the eigenvalue
problem of (K−ω2M)Φ = 0, where K is the stiffness matrix, M is the mass matrix, and
Φ is the eigenvector.

2.2. Power density spectrum by Barlett’s method. In this research, F -statistic
is used as the damage-sensitive feature. Its computation requires the power spectrum
density (PSD) data, which are computed by the following procedure by using Barlett’s
method [43].

We consider an analog, time-varying, and finite-length signal xa(t). In SHM, the signal
may represent the historical data of the displacement at an observation point. The signal
is assumed to be measured at a constant sampling rate of ts such that xi = xa(i · ts)
where i = 0, 1, 2, . . . , (N − 1). We transform the discrete time-domain signal xi into the
frequency domain by applying the discrete Fourier transform with the formula: X(fk) =∑N−1

i=0 xi · exp(−ji2πfts) where f ∈ [0, fs/2] and fs = 1/ts, which is called the sampling
frequency, and fk are discrete frequencies of fi = i · fs/N . To shorten the expression,
we use the symbol Xi to denote X(fi). We partition the signal into M -equal-length sub
signals as illustrated by Figure 3. Barlett’s method computes a signal PSD by averaging
PSDs of the sub signals. The resulted PSD is more reliable and less sensitive to the signal
noises. However, the method is only applicable for long signals. The Barlett’s formula for
computing PSD is:

Si(f) =
1

LM

M−1∑
m=0

∣∣∣X(m)
i

∣∣∣2 . (1)

The signal length N and the number of sub signals M is related by N = LM , where L is
the length of the sub signal.

2.3. F -statistic for SHM. The method is simple and practical, depending only on the
data of structural responses, which can be collected on a few measurement points. It turns
the damage monitoring problem into a directionless hypothesis test that can be solved in
three steps.

The first is the statement of the null and alternative hypotheses, which for this case,
are:

H0 : Sh(ω) = Su(ω) and Ha : Sh(ω) ̸= Su(ω). (2)

The symbol S(ω) denotes PSD. The subscript h denotes the healthy condition and u
means the unknown-to-be-sought condition. The healthy condition is the reference con-
dition, from which the other structural conditions is measured. It should be determined
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Figure 3. The partition of the signal x(t) into M -equal-length sub signals

previously. The structure is assumed healthy if the null hypothesis H0 prevails. It is
considered healthy if its PSD is very much similar to the PSD of healthy condition. The
degree of the similarity is measured statistically. The structure is assumed to contain
damage if the alternative hypothesis Ha prevails, that is the PSDs have changed signif-
icantly. The structure associated with Su(ω) is considered damaged if Su(ω) deviates
significantly from Sh(ω).

The second step is to compute the relevant F -statistic. This statistic is simply a
comparison of two PSDs: Sh(ω) and Su(ω). The statistic has the value of one when
the two PSDs are exactly identical. When the structure contains damages, some values
of the F -statistic may deviate from one becoming very big or very small. The level of
change in PSD determines the magnitude of the F -statistic. The statistic is computed

by: F =
[
Ŝh(ω)

/
Sh(ω)

]/[
Ŝu(ω)

/
Su(ω)

]
. The hat denotes the estimated PSD. This

expression can be made simpler. Under the condition of (2), it can be simplified to

F = Ŝh(ω)
/
Ŝu(ω). (3)

The third is to establish the upper and lower limits of the statistic from which the
change of PSD can be categorized as significant or not. The lower limit is F(1−α/2,2K,2K)

and the upper limit is F(α/2,2K,2K). The symbol α denotes the statistical significance, which
represents the probability of rejecting the null hypothesis given the structure condition is
healthy. The symbol K denotes the degree of freedom, which represents the number of
windows in the Barlett’s method (see Subsection 2.2).

An expression similar to Equation (3), as discussed by [44], is extremely sensitive to
perturbation, producing highly fluctuating statistic, often exceeding the lower and up-
per limits on a healthy structural condition. The F -statistic is unreliable and must be
computed with a great care.

2.4. Linear support vector machine. For SHM, the F -statistic was utilized with a
simple classification method. The structure was assumed damaged if the value of the F -
statistic was greater than F(α/2,2K,2K) or smaller than F(1−α/2,2K,2K) [40, 41]. In contrast,
the current study uses a more robust classification method, which allows us to use multiple
values of the F -statistic.
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In the present study, we only use the support vector machine (SVM) for linearly sep-
arable data. The SVM is a numerical method to compute a hyperplane for separating
a two-class dataset. It can easily be extended to multiple-class problems. The SVM es-
tablishes the hyperplane, governed by (w, b), by using the support vectors, which are the
data points that are closest to the hyperplane. The following SVM formulation is derived
from [45, 46]; readers are advised to the two sources for detail exposition.

We consider the point sets xi ∈ ℜd, as the support vectors, with the categories yi ∈
[−1, +1]. The variable d is a positive integer. The hyperplane that separates yi = −1
from those of yi = +1 should satisfy

<w,x> +b = 0, (4)

where w ∈ ℜd, < w,x > denotes the inner dot product of w and x, and b is a scalar
constant. The hyperplane is obtained by solving the following cost function:

min
w,b

1

2
λ <w,w> +

∑
i

[1 − yi (<w,xi > +b)] , (5)

where λ ≥ 0 is the fudge factor and is used to avoid over fitting. The first part of the loss
function is referred as the regularization loss function and the second part is as the hinge
loss function.

2.5. Performance indicator and evaluation method. We adopt five performance
measures from [47] to evaluate the classification performance. They are: true positive rate
(TPR), true negative rate (TNR), false positive rate (FPR), false negative rate (FNR), and
accuracy. They are computed by the following formulas: TPR = TP/(TP + FN), TNR =
TN/(TN + FP), FPR = FP/(FP + TN), FNR = FN/(FN + TP), Accuracy = (TP +
TN)/(TP + TN + FP + FN) where TP is true positive, TN is true negative, FP is false
positive, and FN is false negative. TPR is also called recall.

3. Results. The dataset used in the current study consists of 17494 cases with five
structural conditions: healthy and damaged at the levels of 1%, 5%, 10%, and 20%. From
each case, a few largest and smallest F -statistic values are extracted from the vibration
data and are utilized as features to determine the structural conditions. The distribution
of the F -statistic is depicted in Figure 4 for the largest and smallest values. We note that
the y-axis of the figures are presented in the log scale because the F -statistic values may
span a few order of magnitude.

Generally speaking, the largest F -statistic values tend to increase exponentially with
the damage level. Meanwhile, the smallest F -statistic values tend to decrease exponen-
tially with the damage level. Those figures also suggest that the F -statistic values on the

Figure 4. The distributions of the largest and smallest F -statistic values
for the structure in the healthy and damaged conditions. The damage level
of zero denotes the healthy condition.
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healthy condition are distributed across almost similar range with those of the 1% dam-
aged condition. Thus, differentiating the healthy condition from the damage condition on
the basis of F -statistic is difficult when the damage level is small. The overlap between
the distributions of the healthy condition and that of damage conditions is smaller with
increasing the damage level, suggesting that identifying the damage condition is easier
when the damage level is high. For those structures designed with the damage tolerance
principles, the question lies on whether or not the identifiable damage level is within the
allowable limit.

3.1. The reliability of the existing method. Firstly, let us discuss the level of the
accuracy of the existing simple method for the current set of data. From a total of 17494
cases, the existing method is able to correctly predict 12707 cases, an accuracy level of
72.6%, or the error rate of 37.4%. A more detailed description of the performance of the
simple method is in Table 2. TPR and TNR denote the rates of true predictions for both
healthy and damaged conditions. It does show not only the results of using one value
of the F -statistic, either the largest of the smallest, but also the results of using a few
F -statistic values. The results are also separated according to the damage level. For the
healthy condition, the simple classifier is able to provide the correct prediction by the rate
of 73.3% up to 87.9% depending on the number of used features. The incorrect prediction
rate is in 12.1-26.8 percents. When it contains small damage, the simple classifier is not
able to satisfactorily differentiate the structure from a healthy one. The data show when
the structure contains 1% damage, the correct prediction is only about 27.7% and the
incorrect prediction is 72.3%. For the damage level of 5% or higher, the simple method
is able to provide classification by 94.7% or more.

Table 2. The accuracy of the simple classification method

Datasets #F -stats TPR TNR FPR FNR Accuracy
Healthy 1 − 0.7323 0.2677 − −

2 − 0.7667 0.2333 − −
3 − 0.8786 0.1214 − −

1% Damage 1 0.2774 − − 0.7226 0.2774
2 0.2203 − − 0.7797 0.2203
3 0.0709 − − 0.9291 0.0709

5% Damage 1 0.9466 − − 0.0534 0.9466
2 0.8474 − − 0.1526 0.8474
3 0.6263 − − 0.3737 0.6263

10% Damage 1 1.0000 − − 0.0000 1.0000
2 1.0000 − − 0.0000 1.0000
3 0.9989 − − 0.0011 0.9989

20% Damage 1 1.0000 − − 0.0000 1.0000
2 1.0000 − − 0.0000 1.0000
3 1.0000 − − 0.0000 1.0000

H-5% 1 0.9466 0.7323 0.2677 0.0534 0.6814
2 0.8474 0.7667 0.2333 0.1526 0.6373
3 0.6263 0.8786 0.1214 0.3737 0.5459

3.2. Distribution of the estimated F -statistic. A better picture regarding the prob-
ability characteristics of the estimated F -statistic and how the distribution is affected by
the damage level is provided in Figure 5. The distribution deviates from the theoretical
distribution significantly around the peak of the distributions at F = 1. Outside the
region, the two distributions are rather identical. The distribution width increases with
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Figure 5. A comparison of the estimated F -statistic for the healthy and
damaged structural conditions and the theoretical probability distribution

increasing the damage level. This fact suggests that a statistical parameter representing
the distribution of data may be a better indicator of damage and its size.

3.3. Optimization of the SVM model parameters. The dataset containing 17494
cases is used to train and test the SVM model (4). The dataset is divided into two subsets
with 70:30 ratio.

During the training phase, the SVM model coefficients of w and b are computed by
minimizing Equation (5). To obtain the reliable model coefficients, the training process
is performed carefully and a number of convergence characteristics are closely monitored
during the iteration. The attention is given particularly to the changes of the cost function
and its components during the iteration. In addition, the changes of the model coefficients
and of the model predictive accuracy are also continuously observed.

At the learning rate of 1×10−4 and the fudge factor λ = 50, the computation converges
quickly to the optimal solution (Figure 6(a)). Both the hinge and regularization loss
functions decrease quickly for the first 50 iterations. Afterwards, the two functions tend to
be unchanged with iterations. The regularization loss function flattens after 50 iterations.
The hinge loss function still decreases but at a very low rate.

The convergence of w and b is depicted in Figure 6(b). The vector w converges mono-
tonically to the best solution. When the computation is terminated at iteration 100, the
change of the vector has become very small. The bias factor b initially decreases until
the iteration 48, from which the bias factor slowly increases. The bias factor b converges
much faster than the vector w.

The change of the model prediction accuracy during the training phase is shown in
Figure 6(c). The accuracy converges much faster than any previously discussed indicators.
After the first iteration, the accuracy has reached the level of 77.8%. This occurs due to the
use of the linear model and the use of large data for each training batch. The accuracy
does not converge to a single value but changing with the batch data. For example,
the accuracy increases for the first three batches of data, drops and then subsequently
increases for the fourth, fifth, sixth, and seventh batches of data. The distribution of the
accuracy is provided in a boxplot located on the upper-right corner of the figure. The
statistics of the accuracy are: min. = 77.4%, Q1 = 79.8%, Q2 = 82.0%, Q3 = 83.0%, and
max. = 85.3%. Finally, we conclude that the linear model is satisfactory numerically.

3.4. The optimum fudge factor. In the cost function of Equation (5), the penalty
factor, the fudge factor λ, is used to avoid the model over fitting the training data. If
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(a) (b)

(c)

Figure 6. The evolution of loss functions (panel a), the model coefficients
∥w∥2 and b (panel b), and the accuracy (panel c) during iteration

(a) (b)

Figure 7. (a) The regularization loss versus the hinge loss. The best
solution is obtained at λ = 50. (b) The effects of the fudge factor λ to the
prediction accuracy during the training phase.

this factor is set to zero, the best model only satisfies the least-square criterion. The
best fudge factor is obtained from an iterative process where the model coefficients are
computed for various values of the fudge factor. The effects of the fudge factor to the
two functions are shown in Figure 7. The hinge loss, measuring the fitness of the model
to the data, tends to increase by increasing the fudge factor. A high value of the hinge
loss denotes poor fitness. The values of the hinge loss are relatively similar for the fudge
factor values of 1, 10, and 50. On the contrary, the regularization loss, measuring the
level of over fitting, tends to decrease with increasing the factor. A high value of the
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regularization loss denotes over fitting. The best fudge factor (λ = 50) is located on the
bottom-left corner of the curve, providing a model that optimally fits the data.

The effects of the fudge factor to the model prediction accuracy during the training
phase are depicted in Figure 7(b). If the fudge factor is set to a small value, the model
may reach the accuracy of around 83.5%. However, this model over fits the data and
may perform poorly for different batches of data. For the fudge factor of 50, which is the
optimum value, the model accuracy is slightly lower at around 82.5%.

3.5. The performance of the current approach. The best model obtained at the
fudge factor of 50 and trained at the rate of 1 × 10−4 is tested by using 500 batches
of data. The results (Figure 8) show that the accuracy is in 76.8-87.5 percents. The
accuracies of the two phases are relatively comparable indicating the model is generally
applicable.

(a) (b)

Figure 8. (a) The model accuracy during the testing phase; (b) the his-
togram and boxplot of the model accuracy during the testing phase

4. Conclusions. We present a solution to the problem associated with the use of F -
statistic for SHM based on structural vibration data. The traditional method considers
the structure to be damaged when the structure vibration data provide an estimate of
F -statistic larger or smaller than the critical values or mathematically, and F -statistic
satisfies any of the conditions: F > F(α/2,2K,2K) or F < F(1−α/2,2K,2K). The traditional
classification method is demonstrated to be less reliable. For example, an analysis per-
formed on the data obtained from a typical structural model shows that it can only achieve
the level of accuracy of 72.6%. The method often labels the healthy structure as damaged
leading to a false-positive signal. This work shows that the accuracy is improved when
the classification method is revised to a simple linear model of wTx+b where x is a vector
containing a few largest and smallest F -statistic values. This revision allows us to take
account of several F -statistic values such that the classification accuracy can be increased
by about 10% to the level of 81.5%.

During our investigation, we witness that the largest or smallest F -statistic value is
a reliable damage indicator when the damage level is significant, but they are not reli-
able when the damage level is small. Moreover, we also witness that the variability of
the F -statistic values seems increasing with the damage level. This fact is worthy for
further investigation. In general, the future work should be addressed to find a damage-
sensitive statistic representing F -statistic values. Some potential statistic descriptives are
the maximum, minimum, range, standard deviation, and interquartile range.
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