
ICIC Express Letters ICIC International ©2018 ISSN 1881-803X
Volume 12, Number 12, December 2018 pp. 1213–1222

SOFT COMPUTING APPROACH FOR PREDICTION
OF SOFTWARE RELIABILITY

Kavita Sahu∗ and R. K. Srivastava

Department of Computer Science
Dr. Shakuntala Mishra National University

Lucknow, Uttar Pradesh 226017, India
∗Corresponding author: kavi9839@gmail.com; rks100664@gmail.com

Received June 2018; accepted September 2018

Abstract. The paper is based on Fuzzy Logic (FL) and Neural Network (NN) techniques
to predict the software reliability using the MATLAB toolbox. There are four methods
used in this paper to predict reliability of the dataset retrieved from John Musa of Bell
Laboratories. These methods are fuzzy method, neural network, fuzzy-neural network
and neural-fuzzy. After the assessment of data the results we achieved were best from the
fuzzy-neural method among all proposed methods. In fuzzy-neural method the Levenberg-
Marquardt algorithm is used for training the neurons. The performance of our proposed
approaches has been tested using the testing data, and 15% of the data are from failure
data set.
Keywords: Software reliability, SRGM (Software Reliability Growth Model), Fuzzy-
neural

1. Introduction. With the ever-increasing role of software in our real life systems, con-
cerns have steadily grown over quality of software products. Therefore, reliability has
become a primary concern from both software developers and software user’s point of
view. Software reliability is a subject of growing importance. Software reliability defined
by ANSI is the probability of failure-free software operation for a specified period of time
in a specified environment [1]. It is an important factor for quantitatively characteriz-
ing software quality and estimating the duration of software. Reliability is one of the
most important non-functional requirements for software [20-22]. Accurately estimating
reliability for service oriented system is not possible.

Software Reliability Growth Model (SRGM) aims to quantify software reliability status
and behavior, help to develop reliable software and predict when reliability has grown
enough to warrant product release [23]. Typically two broad categories of Software Reli-
ability Growth Models (SRGMs) include parametric models and nonparametric models.
Most parametric models depend on priori assumptions about the probability of individual
failures occurring, development environments and the nature of software failures. They in-
clude non-homogeneous Poisson process model, Goel-Okumoto model, SHOOMAN model,
etc. Nonparametric models predict reliability metrics only based on failure history with-
out the assumptions of parametric models [24-26]. Software reliability has remained a
thrust area of research over the past forty years, but still there are flaws in the modeling
of software reliability. In the last two decades there has been lots of work done in the
area of soft computing using the fuzzy logic, neural network, genetic algorithms and their
hybrid approaches [15,16]. Both the statistical and soft computing techniques give note-
worthy results in predicting reliability but it varies as the type of data changes. There are
various prediction techniques for software reliability, but before using these techniques,

DOI: 10.24507/icicel.12.12.1213

1213



1214 K. SAHU AND R. K. SRIVASTAVA

one must thoroughly go through different techniques according to their research question
[17-19].

Neural networks can offer noble approaches to software reliability prediction and model-
ing. Fuzzy logic based reliability estimation models are more appropriate when vague and
imprecise information is to be accounted for. Such models usually rely on expert knowl-
edge, which is however, often too general to fit a particular data set because different data
sets have different characteristics. We present an innovative neuro-fuzzy reliability pre-
diction modeling technique. Dataset provided by John Musa of Bell Laboratories is used
for validation of the model. It was observed that the neuro-fuzzy reliability prediction
model provided significantly better estimations than Mohanty et al. [7].

2. Software Reliability. In traditional reliability theory, both the system and its com-
ponents are allowed to take only two possible states: either working or failed. In general
software reliability is defined as ‘how well the software meets its requirements’ and also
‘the probability of failure free operation for the specified period of time in a specified en-
vironment’ [4-6]. The literature exposes many unpleasant happenings related to failure of
software in the health and defense sectors [2-4,7,8] due to that many people lose their lives.
One of the major causes behind all these misshaping is the presence of unreliable software.
Software reliability is an important factor related to defects and faults. It differs from
hardware reliability in that it reflects the design perfection, rather than manufacturing
perfection. The principal factors that affect software reliability are (i) fault introduction,
(ii) fault removal and (iii) the environment. The basic parameters to be considered during
prediction of reliability are MTBF (Mean Time Between Failures), MTTR (Mean Time
To Repair), FITS (Total no of Failures), Availability, Downtime, MTTF (Mean Time To
Failure), Cumulative Errors.

3. Methods for Prediction.

3.1. Reliability prediction through fuzzy-neural approach. Neural networks and
fuzzy logic represent two different methodologies to deal with uncertainty. Each of those
has its own advantages and disadvantages for using in prediction. Neural network can
be used in complex non-linear relationships while fuzzy logic is used for imprecision and
uncertain data. The fuzzy set theory has emerged as an alternative to capture the vague-
ness, uncertainty and imprecision present in the information. Therefore, in early stages,
where the data is inadequate or is present in form of ‘knowledge’, use of fuzzy logic would
be more appropriate. Any models based on fuzzy techniques help in the prediction of
software residual defects. Here a hybrid approach of neuro-fuzzy combination is used for
predicting reliability. The proposed model of prediction is depicted in Figure 1.

Figure 1. Implementation of fuzzy-neural approach



ICIC EXPRESS LETTERS, VOL.12, NO.12, 2018 1215

Method of Fuzzification and Prediction. Method of prediction through fuzzy has
been obtained by Srivastava [8]. Fuzzification process starts with defining the universe of
discourse U, which contains the historical data and upon which the fuzzy sets are defined.
The study deals with the number of faults occurred during the software reliability checking
with assumption that it includes some vagueness incurred due to statistical sampling. The
algorithm for application of fuzzy method for software reliability prediction comprises the
following steps.

Step 1: Let Amin and Amax be minimum and maximum production. Based upon Amin

and Amax, we define the universe of the discourse U as [Amin − A1, Amax + A2], where A1

and A2 are two proper positive numbers and accordingly, the universe of discourse U =
[3-15]. Further the universe of discourse U is partitioned into six intervals of equal length
as follows:

U1 = [3-5] A1 = 4

U2 = [5-7] A2 = 6

U3 = [7-9] A3 = 8

U4 = [9-11] A4 = 10

U5 = [11-13] A5 = 12

U6 = [13-15] A6 = 14
Step 2: Fuzzy sets A1, A2, A3, A4, A5, A6 on universe of discourse, having linguistic

values as:
A1 = not good, A2 = not too good, A3 = satisfactory good,

A4 = good, A5 = fairly good, A6 = very good
are to be defined. U1, U2, U3, U4, U5, U6 are chosen as elements of these fuzzy sets. The
membership grades of U1, U2, U3, U4, U5, U6 to

A1 = {U1/1, U2/.5, U3/0, U4/0, U5/0, U6/0}
A2 = {U1/.5, U2/1, U3/.5, U4/0, U5/0, U6/0}
A3 = {U1/0, U2/.5, U3/1, U4/.5, U5/0, U6/0}
A4 = {U1/0, U2/0, U3/.5, U4/1, U5/.5, U6/0}
A5 = {U1/0, U2/0, U3/0, U4/.5, U5/1, U6/.5}
A6 = {U1/0, U2/0, U3/0, U4/0, U5/.5, U6/1}
The fuzzy logical relationships are
A1 → A4

A2 → A4, A3, A4, A2, A4, A3

A3 → A3, A4, A3, A4, A4, A3, A3, A3, A4, A3, A3, A5, A3, A2, A1, A4, A4, A4, A6, A3,
A5

A4 → A4, A3, A4, A5, A3, A3, A4, A3, A3, A4, A2, A4, A4, A4, A3, A3, A5, A4, A2, A3,
A4, A5, A4, A3, A4, A5, A4, A4, A5, A5, A5, A5

A5 → A5, A2, A4, A4, A3, A5, A5, A4, A5, A5, A5, A5, A4, A6, A4, A6, A6, A5, A5, A5,
A5, A6, A5, A6, A4 A6 → A6, A3, A6, A6, A5, A6, A5, A5, A3, A5

From here we get
A1 = 7
A2 = 8.2857
A3 = 9.1305
A4 = 9.4285
A5 = 12
A6 = 12.1818

3.2. Neural network approach. Artificial neural networks are a computational meta-
phor inspired by studies of the brain and nervous systems in biological organisms [5]. Neu-
ral networks are likened to non-parametric models in the statistical literature. It commu-
nicates through the connections between processing elements called neurons. Knowledge



1216 K. SAHU AND R. K. SRIVASTAVA

Figure 2. Process of neural network

is encoded into the network through the strength of the connections between different
neurons, called weights, w which can be modified so as to model synaptic learning. The
unit computes some function f of the weighted sum of its inputs. While designing the
neural network the individual element inputs are x1, x2, . . ., xm multiplied by the weights
wk1, wk2, . . ., wkm and the weighted values are fed to the summing junction. Their sum is
simply wx, the dot product of the single row matrix w and the vector x. m is the number
of elements in the input vector.

a =
(∑

w1,m × m
)

+ b (1)

The weighted sum is
∑

w1, and m×m is called the net input to unit 1, often written
as net1.

Note that w1, m refers to the weight from unit m to unit 1 and b refers to the bias
neuron.

The function φ is the unit’s activation function. In the simplest case, φ is the sigmoid
function, and the unit’s output is

φ(n) = 1/(1 + e−n) (2)

Neural networks learn by example. The learning rule is provided with a set of examples
(the training set) of proper network behavior {x1, t1}, {x2, t2}, . . ., {xQ, tQ} where xQ is
an input to the network, and tQ is the corresponding correct (target) output. As the
inputs are applied to the network, the network outputs are compared to the targets. The
learning rule is then used to adjust the weights and biases of the network in order to move
the network outputs closer to the targets.

We have used the MATLAB for neural network tool. We used Levenberg-Marquardt
algorithm for training and testing of results. LM algorithm combines the advantages
of gradient-descent and Gauss-Newton methods. LM steps are linear combination of
gradient-descent and Gauss-Newton steps based on adaptive rules. Gradient-descent dom-
inated steps until the canyon is reached, are followed by Gauss-Newton dominated steps.
The training dataset is 70% of the actual data while testing and validation set are 15%
each.

4. Results and Discussion. The proposed methods of fuzzy approach and fuzzy-neural
approach have been implemented on the very well-known data set of John Musa of Bell
Laboratories received from IEEE repository. We have applied results achieved from fuzzy



ICIC EXPRESS LETTERS, VOL.12, NO.12, 2018 1217

prediction into the ANFIS tool of MATLAB. Membership functions for ANFIS tool input
are

Name='input1'
Range=[1 15]

MF1='NG':'trimf',[1 2 3]

MF2='NTG':'trimf',[3 4.5 6]

MF3='SG':'trimf',[5.5 7 8.5]

MF4='G':'trimf',[8.5 9.5 10.5]

MF5='FG':'trimf',[10.48 11.488 12.48]

MF6='VG':'trimf',[12.6 13.68 15]

Output membership functions are

Range=[0 15] Num

MFs=3

MF1='NG':'trimf',[0.167 2.92 5.257]

MF2='FG':'trimf',[4.503 7.16 10]

MF3='VG':'trimf',[9 12.043 15]

Fuzzy min-max method is used for fuzzification and centroid method is used for de-
fuzzification while back propagation algorithm is used in getting the better results. The
fuzzy if-then rules, membership functions and ANFIS process is depicted in the figure
below.

Figure 3. Process in ANFIS tool of MATLAB

Reliability prediction values in form of time to failure achieved from different techniques
that are fuzzy, fuzzy-neural, neural network and neural-fuzzy are shown in Appendix A.

To have a comparison of the NRMSE calculated values of our proposed models and
shown in Figure 2. The Root-Mean-Square Error (RMSE) is a frequently used measure of
the differences between values (sample and population values) predicted by a model or an



1218 K. SAHU AND R. K. SRIVASTAVA

estimator and the values actually observed. The RMSE represents the sample standard
deviation of the differences between predicted values and observed values. The RMSE of
prediction of a method is measure of accuracy of that prediction method. Normalizing
the RMSE facilitates the comparison between datasets or models with different scales.
Though there is no consistent means of normalization in the literature, common choices
are the mean or the range (defined as the maximum value minus the minimum value) of
the measured data:

NRMSE =
RMSE

max−min
where

RMSE =

√∑n
i=1(Pi − Oi)2

n
where Pi is predicted value and Oi is observed value. n is the number of observations.
NRMSE is often expressed as a percentage, where lower values indicate less residual
variance. In many cases, especially for smaller samples, the sample range is likely to be
affected by the size of sample which would hamper comparisons. The NRMSE values
attained by the above results are

Fuzzy Fuzzy-neural Neuro-fuzzy Neural

0.102111 0.05463183 1.081001141 0.15418

The average NRMSE values achieved by different methods and their effects are depicted
by graph in following Figure 4.

Figure 4. Graph of NRMSE between different methods

5. Conclusions. The proposed fuzzy-neural method has been implemented to have soft-
ware reliability. The prediction of reliability has many factors such as mean time to failure,
and time to failure. We have considered the time to failure data of bell laboratories. The
motivation of the study is that there is no single method which can be used in all kinds
of data of reliability for prediction. Hence this research focused on hybrid methodology



ICIC EXPRESS LETTERS, VOL.12, NO.12, 2018 1219

Figure 5. Comparison of achieved results from different methods

of fuzzy neural. In this method we implemented data of reliability on fuzzy methodol-
ogy manually and the results are then applied to the MATLAB tool of neural network.
Further in neural network we used Levenberg-Marquardt algorithm to predict reliability.

To evaluate the performance of reliability prediction model, average normalized RMSE
error was computed. From the four methods proposed here it comes minimum with
the fuzzy-neural method and it is 0.05463183 which is good in comparison to the other
methods.

Based on the results achieved we may conclude that

• The suitability of the proposed method is examined and it is found that the fuzzy-
neural method of prediction of software reliability is superior in terms of accuracy
and robustness.

• Fuzzy based algorithm proposed here with the MATLAB implementation of neu-
ral network can be used as effective model for prediction of reliability with failure
dataset.

• In the proposed work we have considered only one factor of reliability. In future
results may vary with the different factors consideration.

REFERENCES

[1] J. D. Musa, Software Reliability Engineering: More Reliable Software, Faster Development and
Testing, Mcgraw-Hill, New York, 2004.

[2] D. N. Arnold, Two Disasters Caused by Computer Arithmetic Errors, http://www.ima.umn.edu/
*arnold/455.f96/disasters.html.

[3] M. R. Lyu, Software reliability engineering: A road map, Future of Software Engineering, pp.153-170,
2007.

[4] D. K. Yadav, S. K. Chaturvedi and R. B. Misra, Early software defects prediction using fuzzy logic,
International Journal of Performability Engineering, vol.8, no.4, pp.399-408, 2012.

[5] J. L. Lions, ARIANE 5 Flight 501 Failures-Report by the Inquiry Board, http://www.di.unito.it/
*damiani/ariane5rep.html.

[6] J. D. Musa, Software reliability data, IEEE Computer Society Repository, 1979.
[7] R. Mohanty, V. Ravi and M. R. Patra, Hybrid intelligent systems for predicting software reliability,

Applied Soft Computing, vol.13, no.1, pp.189-200, 2013.



1220 K. SAHU AND R. K. SRIVASTAVA

[8] R. K. Srivastava, Fuzzy-neural techniques for short term forecast of food grains production, Inter-
national Journal of Information Technology, vol.4, no.2, pp.385-390, 2011.

[9] N. Rajkiran and V. Ravi, Software reliability prediction using wavelet neural networks, International
Conference on Computational Intelligence and Multimedia Application (ICCIMA 2007), pp.195-197,
2007.

[10] Y.-S. Su and C.-Y. Huang, Neural-network-based approaches for software reliability estimation using
dynamic weighted combinational models, The Journal of Systems and Software, vol.80, no.4, pp.606-
615, 2007.

[11] T. M. Khoshgoftaar, E. B. Allen, W. D. Jones and J. P. Hudepohl, Classification – Tree models of
software quality over multiple releases, IEEE Trans. Reliability, vol.49, no.1, pp.4-11, 2000.

[12] N. Karuanithi, D. Whitely and K. Malaya, Predictions of software reliability using connectionist
models, IEEE Trans. Software Engineering, vol.18, no.7, pp.563-574, 1992.

[13] L. A. Zadeh, Fuzzy sets, Information and Control, vol.8, pp.338-353, 1965.
[14] L. A. Zadeh, Fuzzy logic and soft computing: Issues, contentions and perspectives, Proc. of

IIZUKA’94: The 3rd International Conference on Fuzzy Logic, Neural Nets and Soft Computing,
Iizuka, pp.1-2, 1994.

[15] Y. Zhang and H. Chen, Predicting for MTBF failure data series of software reliability by genetic
programming algorithm, Proc. of the 6th International Conference on Intelligent Systems Design
and Applications (IEEE Computer Society), Washington, USA, 2006.

[16] E. O. Costa, A. T. R. Pozo and S. R. Vergilio, A genetic programming approach for software reliability
modeling, IEEE Trans. Reliability, vol.59, no.1, 2010.

[17] Z. Al-Rahamneh, M. Reyalat, A. F. Sheta, S. Bani-Ahmad and S. Al-Oqeili, A new software reli-
ability growth model: Genetic-programming-based approach, Journal of Software Engineering and
Applications, vol.4, pp.476-481, 2011.

[18] M. Benaddy and M. Wakrim, Simulated annealing neural network for software failure prediction,
International Journal of Software Engineering and Its Applications, vol.6, no.4, 2012.

[19] D. K. Yadav, S. K. Chaturvedi and R. B. Misra, Early software defects prediction using fuzzy logic,
International Journal of Performability Engineering, vol.8, no.4, pp.399-408, 2012.

[20] R. Kumar, S. A. Khan and R. A. Khan, Durable security in software development: Needs and
importance, CSI Communication, pp.34-36, 2015.

[21] K. Sahu, Rajshree and R. Kumar, Risk management perspective in SDLC, International Journal of
Advanced Research in Computer Science and Software Engineering, vol.4, no.3, pp.1247-1251, 2014.

[22] K. Sahu and R. K. Srivastava, Revisiting software reliability, in Data Management, Analytics and In-
novation, Advances in Intelligent Systems and Computing, V. Balas, N. Sharma and A. Chakrabarti
(eds.), Springer, 2018.

[23] C. Jin and S. W. Jin, Software reliability prediction model based on support vector regression with
improved estimation of distribution algorithms, Applied Soft Computing, vol.15, pp.113-120, 2014.

[24] P. Roy, G. S. Mahapatra, P. Rani, S. K. Pandey and K. N. Dey, Robust feedforward and recur-
rent neural network based dynamic weighted combination models for software reliability prediction,
Applied Soft Computing, vol.22, pp.629-637, 2014.

[25] S. W. A. Rizvi, R. A. Khan and V. K. Singh, Software reliability prediction using fuzzy inference
system: Early stage perspective, International Journal of Computer Applications, vol.145, no.10,
pp.16-23, 2016.

[26] Y. Shi, M. Li, S. Arndt and C. Smidts, Metric-based software reliability prediction approach and its
application, Empirical Software Engineering, vol.22, no.4, pp.1579-1633, 2017.



ICIC EXPRESS LETTERS, VOL.12, NO.12, 2018 1221

Appendix A.



1222 K. SAHU AND R. K. SRIVASTAVA


