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Abstract. Artificial bee colony (ABC) has shown competitive performance for han-
dling complex optimization problems. However, it inevitably suffers from slow conver-
gence and loses balance between exploitation and exploration. In this paper, a cellular
structured neighborhood and a redefined probability calculation method are proposed for
ABC (ABCCA). Individuals interact with specific neighbors in cellular automata (CA)
model while maintaining the population diversity. A set of benchmark functions is used
to test the algorithms and the results demonstrate that the proposed strategies help ABC
improve in terms of convergence rate and global search ability while compared with other
variants of ABC.
Keywords: Artificial bee colony, Cellular structure, Probability calculation, Conver-
gence

1. Introduction. Evolutionary optimization methods (EAs) [1,2], as a significant branch
of derivative-free methods, have been proven to be efficient tools for solving complex opti-
mization problems. The famous algorithms include genetic algorithm (GA) [3] evolution
strategy (ES) [4,5], evolutionary programming (EP) [6], differential evolution (DE) [7,8],
ant colony optimization (ACO) [9], particle swarm optimization (PSO) [10], artificial
immune algorithm (AIA) [11], etc.

Artificial bee colony (ABC) was proposed by Karaboga [12] in 2005, inspired from
the foraging behavior of honeybees. In ABC, there are three kinds of bees to perform
different division of work. Employed bees take the responsibility for searching food sources
in a given multidimensional continuous search space and propagating food information
to onlooker bees. After receiving the information, onlooker bees make an exploitative
search around the neighborhood of food. The scouts are designed to help jump out of
local minima. Since it is easy to implement with fewer control parameters and simple
structure, ABC has validated comparable performance to other EAs [13-15].

However, since the search equation performs well in exploration but poor in exploita-
tion, ABC inevitably faces slow convergence. To address this, researchers have developed
plenty of approaches from various aspects. In terms of modified search equations, global
best solution inspired from PSO and DE is highlighted to improve the exploitation ability,
such as GABC [16] and MABC [17]. Under the guidance of global best solution, indi-
viduals could be pulled towards the potential regions; thus, the convergence rate can be
improved. Besides, in [18], Gaussian distribution was used for parameter turning to get
better stability and exploitative behavior. In the case of hybrid ABC, some evolutionary
operators involved in other EAs have been incorporated in ABC. For example, chaotic-
based search widely used for initialization was proposed to enhance global convergence
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and keep population diversity [17,19,20]. Finally, new selection strategy for neighborhood
was designed for updating equation to enhance the local search ability [20,21]. To avoid
random search direction, previous successful experience of foraging was memorized for
bees to provide favorable search guidance in [22-24].

However, to our best knowledge, little attention has been paid on the neighborhood
structure of ABC in the past literature. Therefore, we try to use a cellular topology
motivated by cellular automata (CA) [25] to decentralize the population, in which the
population can be arranged in a 2-D lattice structure and individuals interact with each
other in a particular neighborhood. This proposed algorithm is termed as ABCCA.

The rest of paper is structured as follows. Section 2 describes the ABC algorithm
in detail. Section 3 introduces the motivation of this paper. Experimental studies are
reported and discussed in Section 4. Finally, the conclusion is drawn in Section 5.

2. Overview of ABC. In an ABC system, there are three groups of bees: employed,
onlooker and scouts. The number of employed and onlooker bees account for half of the
colony. The position of a bee represents a candidate solution of the optimization problem,
and its corresponding fitness denotes the amount of nectar of a food source. It should
be noted that one food source is assigned to only one employed bee. Assuming that the
initial population, consisting of SN D-dimensional vectors Xi = (xi,1, xi,2, . . . , xi,D), is
randomly generated by Equation (1),

xi,j = XMIN j + rand(0, 1) (XMAX j − XMIN j) (1)

where i ∈ {1, 2, . . . , SN }, j ∈ {1, 2, . . . , D}, and XMIN j and XMAX j are the lower and
upper bounds of the jth dimension. The employed bees randomly choose a dimension to
generate a new candidate solution Vi by Equation (2),

vi,j = xi,j + ϕi,j (xi,j − xk,j) (2)

where j ∈ {1, 2, . . . , D} and k ∈ {1, 2, . . . , SN }∩k ̸= i are randomly selected indexes; ϕi,j

is a uniformly random number in [−1, 1]. Then, a greedy selection based on the amount
of nectar is adopted to select the better one between the candidate and the old solutions.
After that, employed bees share food information with onlooker bees through dancing.

Onlookers select potential food sources to exploit according to the probabilities cal-
culated by fitness. The probability pi and fitness fiti of solution Xi is calculated as
follows:

pi = fiti

/
SN∑
i=1

fiti (3)

fiti =

{
1/(1 + fi) fi > 0

abs(fi) fi < 0
(4)

where fi denotes the objective function value. In the scout phase, a solution would
be abandoned if it had not been improved after consecutive Limit iterations and the
associated employed bee would become a scout to produce a new random solution by
Equation (2).

3. ABC with Cellular Automata Model.

3.1. Motivation. Two contradictory aspects that intensively influence the performance
of EAs are exploration and exploitation. Exploration is considered as the ability to search
the unknown region to find potential solutions, while exploitation refers to the ability to
exploit better solutions in the neighborhood using information of previous good individu-
als. Onlookers selected by probabilities in Equation (3) take responsibility for exploiting
better individuals. Nevertheless, the fitness values can be approximately equal to 1 when
the corresponding objective function values are positive but too small, e.g., 1e-30. This
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has a directly negative effect on the calculation of probabilities, on which onlookers depend
to select potential individuals to exploit. Furthermore, scouts are supposed to increase
diversity when the population is getting stuck in a local optimum.

In order to validate the above discussion about the performance of onlooker bees and
scouts, an experiment is conducted to record the mean number of scouts, the mean per-
centage of independent individuals regarded as onlookers and the mean convergence curves
along with the search process. The experimental results on function Ackley with D = 30
in [−32, 32] observed at three different values of Limit, e.g., 0.2 ∗ SN ∗ D, 0.6 ∗ SN ∗ D
and 1.0 ∗ SN ∗ D [16] are presented in Figures 1-3, from which inspiring conclusions can
be drawn as follows:

1) Scouts appear transitorily after the stagnation of population, and the time occurring
becomes later with Limit increasing;

2) The proportion of onlooker bees vibrates when scouts appear; otherwise, it keeps more
than 60%;

3) The convergence curves keep unchangeable no matter what values Limit are.

Figure 1. Results on Ackley with Limit = 0.2∗SN ∗D: (a) mean number
of scouts; (b) the proportion of selected onlookers; (c) convergence curve
over iterations

Figure 2. Results on Ackley with Limit = 0.6∗SN ∗D: (a) mean number
of scouts; (b) the proportion of selected onlookers; (c) convergence curve

3.2. Hybridization of CA model and ABC. The concept of CA model was first
proposed by Von Neumann and Ulam, and the primary classification of CA was outlined
by Wolfram [25]. As a discrete dynamical system, CA can stimulate micro-behavior
by micro-dynamics using the interaction of individuals (cells) connected in particular
neighborhood structures. Therefore, CA model is adopted to decentralize the population
of ABC.
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Figure 3. Results on Ackley with Limit = 1.0∗SN ∗D: (a) mean number
of scouts; (b) proportion of selected onlookers; (c) convergence curve

L5 L9 C9 C13 C21 C25

Figure 4. Six famous neighborhood in CA

Table 1. Radius and ratio of six neighborhoods in Figure 4

````````````Neighborhood
Shape 5 × 20 10 × 10

radshape radneighborhood ratio radshape radneighborhood ratio
L5 5.2783 0.8944 0.1694 4.062 0.8944 0.2202
L9 5.2783 1.4907 0.2824 4.062 1.4907 0.3670
C9 5.2783 1.1547 0.2188 4.062 1.1547 0.2843
C13 5.2783 1.4676 0.2780 4.062 2.0000 0.3613
C21 5.2783 1.7995 0.3409 4.062 1.4676 0.4430
C25 5.2783 2.0000 0.3789 4.062 1.7995 0.4924

3.2.1. Cellular automata (CA). There are four basic components in CA: cell space, neigh-
borhood, cell state, and transition rule. Cell space presents the connecting structure of
cells, and a checkboard-like lattice structure in two-dimension is employed in this paper.
Neighborhood is defined as the cells surrounding a given cell, and six commonly used
neighborhoods are shown in Figure 4, where L5 and L9 are linear neighborhood and C9,
C13, C21, and C25 are compact neighborhood.

For a cell, the distribution of its neighbors is an important characteristic of a neighboring
structure. For instance, the number of neighbors in L9 and C9 is the same, but the
distribution is totally different. Alba and Troya [26] defined the ‘radius’ for both 2-D grid
and the neighborhood by the dispersion of n∗ points in a circle centered in (x̄, ȳ) based
on Equation (5), and then the grid-neighborhood relationship can be quantified by the
relative ratio between their radius according to Equation (6). For comparison, the radius
and ratio for different neighborhoods (i.e., 100 = 5 ∗ 20 and 100 = 10 ∗ 10) with 100
individuals are presented in Table 1. It is obviously noted that thinner grid shape gets
smaller ratio because of the larger dispersion.

rad =

√(∑n∗

i=1 (xi − x̄)2 +
∑n∗

i=1 (yi − ȳ)2)/n∗,

x̄ =
∑n∗

i=1 xi

/
n∗, ȳ =

∑n∗

i=1 yi

/
n∗

(5)
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ratio = radneighborhood /radshape (6)

3.2.2. ABC with cellular structured topology. From the above description, it can be seen
that CA is easy to implement without any strict mathematical reasoning. To enhance the
cooperation of population, the concept of CA is applied in ABC to exploring the neigh-
boring structure and diffusing mechanism. Some elaborated definitions for integrating
ABC and CA are given as follows.

a) Cell space
An individual is thought of a cell, and the number of cells in CA is equal to the number

of individuals in ABC. Then, each individual is randomly allocated to a unique cell of
the lattice structure without duplication in the initial phase, and most importantly the
position of an individual in the lattice structure is fixed during the search process.

b) Neighborhood
Taking C9 as an example, an explicit representation of the neighboring structure is

depicted in Figure 5 with one hundred individuals. Individuals locally interact with their
neighbors, and such limited information transmission has advantages of improving local
search ability. Meanwhile, since the population has been decentralized, the information
delivered by individuals could be slowly diffused to others through overlapping neighbors.

Figure 5. Neighboring structure in the Moore neighborhood C9

c) Cell state
According to the definition of ABC, the cell state can be briefly defined as employed,

onlooker or scout. Naturally, switch of cell states is an important issue for the search
process. It can be noted that the state transition between employed and onlooker is
dominated by the parameter p in Equation (3), and the state transition between employed
and scouts is determined by the parameter Limit.

d) Transition rule
The search equation updating the positions of individuals is regarded as transition rule.

In order to improve the local exploitation in the neighborhood, a novel search equation is
proposed, which gets inspiration from Gaussian distribution. The generalized formulation
is defined as follows,

vi,j = N (si,j, α ∗ |si,j − xk,j|) (7)

α = 0.8 ∗

(
1 −

√
FEs

max FEs

)
+ 0.2 (8)

where j ∈ {1, 2, . . . , D} is a randomly selected dimension; FEs denotes the index of
current function evaluation; maxFEs means the maximal number of function evaluations;
k ∈ {1, 2, . . . , SN }∩k ̸= i and Xk is a randomly chosen solution from the whole population
instead of the neighborhood; Si is regarded as the local attractor of individual Xi, and si,j

is the jth element of vector Si; α is a scaling factor to control the magnitude of variance
operator, which iteratively decreases from 1.0 to 0.2 by Equation (8).

It should be emphasized that Si is an abstract term with different definitions for em-
ployed and onlooker bees as shown in Equations (9) and (10), where xlbest,j and xgbest,j

are the jth elements of the local best position Xlbest and the global best position Xgbest,
respectively. λ, which controls the degree xi,j depending on xlbest,j, decreases along with
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the iterations; N(·) is used as a noise for λ obeying a normal distribution whose mean
and standard deviation both are 0.5.

si,j = λ ∗ xlbest,j + (1 − λ) ∗ xk,j (9)

si,j = λ ∗ xlbest,j + (1 − λ) ∗ xgbest,j (10)

λ = N(0.5, 0.5) ∗

(
1 −

(
FEs

max FEs

)2
)

(11)

4. Experiments and Analysis.

4.1. Test suites. In order to comprehensively investigate the effectiveness of ABCCA,
experiments are conducted on 15 benchmark functions with different properties (uni-
modal, multimodal, separated, shifted, rotated, and noisy) from [27].

4.2. Experimental settings. In this paper, the population size of all the compared
algorithms is set to be 100 (SN = 50). The dimension D is set as 30, and the parameter
Limit of ABCCA is set as 100. Each algorithm runs 50 times independently for each
function.

Three groups of experiments are designed for analysis and comparison. In order to find
out the effect of the proposed strategies, the first group of experiments is for comparison
among ABC and five new variants of ABC, including ABC with C25 cellular structured
population (cABC), ABC with adaptive parameter Pr (pABC), ABC with Gaussian-based
search equation (gABC), ABC with both Pr and C25 neighborhood structure (pcABC)
as well as the proposed ABCCA. The next two groups of experiments are carried out to
investigate the influence of different grid shapes and neighborhoods appointed on ABC.
The maximal number of function evaluation on F1-F15 is set as 150000 [27].

4.3. Experimental results on benchmark functions.

4.3.1. Performance comparison among different variants of ABC. For algorithms cABC,
pcABC, and ABCCA, which are embedded with the cellular structured population, the
2-D grid shape is set as 6 × 8, and the neighborhood structure is C25. The results are
listed in Table 2 in terms of mean best values (Mean) and standard deviations (Std) of the
best solutions obtained on the fifteen functions. The superior algorithm for each function
is highlighted in boldface.

From Table 2, we can see that ABCCA achieves the best performance on 11 functions
with the exception of F6, F8, F9 and F10 where gABC performs best on the first three
functions and pABC does well on the last one.

4.3.2. Performance comparison of ABCCA with four grid shapes. In this group of ex-
periments, the performance of ABCCA with different grid shapes and fixed number of
neighbors is investigated. With a constant or approximated size of population 50, four
2-D grid shapes used here are: (a) 4 × 12 ≈ 48; (b) 5 × 10 = 50; (c) 6 × 8 ≈ 48;
(d) 7 × 7 ≈ 49, and the corresponding ABCCA with these grid shapes are denoted as
ABCCA-G1, ABCCA-G2, ABCCA-G3, ABCCA-G4. For clarity, the ratios for different
grid shapes are listed in Table 3. C25 is employed for this group of experiments.

The results are given in Table 4 in terms of mean best values and standard deviations
out of 50 runs. From Table 4 it can be seen that all the four algorithms can reach the
global optima on functions F7, F11, F12, and F13, and ABCCA-G3 performs the best
on most unimodal functions, involving F1, F2, F3 and F5. Moreover, it seems that the
relationship between the ratios and the results is not evident.
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Table 2. Mean and standard deviation of six variants of ABC on 15 functions

Algorithms ABC pABC cABC pcABC gABC ABCCA

F1
Mean 8.81e-16 6.51e-16 2.06e-17 2.99e-21 1.16e-41 3.88e-75
Std 1.59e-16 9.63e-17 1.79e-17 5.08e-21 6.91e-41 5.69e-75

F2
Mean 9.89e-09 2.41e-15 2.74e-09 5.28e-17 2.59e-37 1.26e-71
Std 9.01e-09 1.77e-15 3.48e-09 6.91e-17 1.79e-36 1.83e-71

F3
Mean 5.71e-16 5.84e-16 3.90e-19 2.04e-22 9.38e-43 5.18e-76
Std 8.79e-17 8.61e-17 3.04e-19 2.62e-22 3.56e-42 8.82e-76

F4
Mean 3.41e-08 1.77e-06 2.37e+00 1.13e-07 −3.02e-12 −3.64e-12
Std 1.21e-07 1.04e-05 1.67e+01 7.41e-07 8.70e-13 0.00e+00

F5
Mean 2.13e-10 5.54e-11 1.20e-10 8.01e-12 2.21e-22 1.27e-39
Std 6.69e-11 1.73e-11 3.51e-11 5.82e-12 8.00e-22 9.49e-40

F6
Mean 1.28e+01 1.07e+01 1.17e+01 1.07e+01 1.25e+00 5.46e+00
Std 2.87e+00 2.33e+00 2.98e+00 2.22e+00 2.21e-01 9.00e-01

F7
Mean 0 0 0 0 0 0
Std 0 0 0 0 0 0

F8
Mean 1.10e-01 1.08e-01 1.12e-01 1.04e-01 1.32e-02 1.60e-02
Std 2.40e-02 2.11e-02 2.07e-02 2.21e-02 3.53e-03 4.35e-03

F9
Mean 3.66e-01 3.19e-01 3.59e-01 3.22e-01 1.97e-01 2.28e-01
Std 2.16e-02 3.26e-02 2.62e-02 3.13e-02 3.81e-02 2.63e-02

F10
Mean 5.80e-02 4.28e-02 7.05e-02 4.39e-02 6.65e-01 1.65e-01
Std 4.71e-02 3.10e-02 7.15e-02 3.41e-02 1.24e+00 2.52e-01

F11
Mean 1.44e-14 1.42e-14 1.57e-14 4.05e-15 0 0
Std 1.43e-14 1.56e-14 1.64e-14 6.28e-15 0 0

F12
Mean 2.99e-13 2.48e-13 3.82e-13 3.72e-14 0 0
Std 4.46e-13 3.23e-13 6.95e-13 4.93e-14 0 0

F13
Mean 6.16e-14 3.52e-15 2.17e-14 3.95e-15 0 0
Std 1.35e-13 5.22e-15 4.95e-14 1.23e-14 0 0

F14
Mean 1.23e-16 9.23e-14 2.13e-21 1.33e-21 5.80e-61 1.83e-133
Std 1.23e-16 1.96e-13 3.97e-21 3.23e-21 2.98e-60 9.53e-133

F15
Mean 1.51e-09 1.56e-09 9.85e-10 2.72e-10 1.56e-14 1.06e-14
Std 5.59e-10 5.26e-10 3.82e-10 1.93e-10 3.11e-15 2.74e-15

Table 3. Radiuses and ratios of four gird shapes

``````````````Neighborhood
2-D Grid 4 × 12 5 × 10 6 × 8 7 × 7

radshape ratio radshape ratio radshape ratio radshape ratio
L5 3.6429 0.2455 3.2879 0.2720 3.1160 0.2870 2.8284 0.3162
L9 3.6429 0.4092 3.2879 0.4534 3.1160 0.4784 2.8284 0.5270
C9 3.6429 0.3170 3.2879 0.3512 3.1160 0.3706 2.8284 0.4082
C13 3.6429 0.4029 3.2879 0.4464 3.1160 0.4710 2.8284 0.5189
C21 3.6429 0.4940 3.2879 0.5473 3.1160 0.5775 2.8284 0.6362
C25 3.6429 0.5490 3.2879 0.6083 3.1160 0.6418 2.8284 0.7071

4.3.3. Performance comparison of ABCCA with six neighborhood structures. In this sub-
section, six neighborhoods in Figure 4 are used in ABCCA to find out how these neigh-
borhoods impact the performance of ABCCA, and the algorithms are represented as
ABCCA-L5, ABCCA-L9, ABCCA-C9, ABCCA-C13, ABCCA-C21, and ABCCA-C25 re-
spectively. The fixed 2-D grid shape for all algorithms is 6 × 8 ≈ 48 according to the
results obtained in the former subsection. The results of mean best values and standard
deviations over 50 runs are listed in Table 5, from which, it can be noted that all the
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Table 4. Performance comparisons among the ABCCA with four grid shapes

F ABCCA-G1 ABCCA-G2 ABCCA-G3 ABCCA-G4

F1
1.12e-77 3.88e-75 7.72e-78 2.53e-76
1.47e-77 5.69e-75 1.23e-77 4.13e-76

F2
4.59e-74 1.26e-71 1.46e-74 3.81e-73
6.52e-74 1.83e-71 1.95e-74 6.05e-73

F3
1.75e-78 5.18e-76 2.73e-78 1.96e-77
2.76e-78 8.82e-76 4.18e-78 2.57e-77

F4
−3.64e-12 −3.64e-12 −3.64e-12 −3.64e-12

0 0 0 0

F5
1.02e-40 1.27e-39 5.13e-41 1.65e-40
8.21e-41 9.49e-40 4.20e-41 1.36e-40

F6
5.42e+00 5.46e+00 5.24e+00 5.55e+00
9.80e-01 9.00e-01 9.69e-01 9.14e-01

F7
0 0 0 0
0 0 0 0

F8
1.48e-02 1.60e-02 1.46e-02 1.52e-02
3.77e-03 4.35e-03 4.30e-03 4.11e-03

F9
2.30e-01 2.28e-01 2.34e-01 2.30e-01
3.37e-02 2.63e-02 2.84e-02 3.07e-02

F10
4.07e-01 1.65e-01 2.78e-01 2.36e-01
1.12e+00 2.52e-01 5.72e-01 4.08e-01

F11
0 0 0 0
0 0 0 0

F12
0 0 0 0
0 0 0 0

F13
0 0 0 0
0 0 0 0

F14
4.99e-138 1.83e-133 1.59e-139 6.93e-137
3.29e-137 9.53e-133 5.38e-139 3.28e-136

F15
1.09e-14 1.06e-14 1.08e-14 1.05e-14
2.73e-15 2.74e-15 2.87e-15 2.96e-15

algorithms are able to reach the global optima on four functions, including F7, F11, F12
and F13. It can be also seen that both ABCCA-C25 and ABCCAC21 show the best
performance and the difference between them is not obvious. ABCCA-L5 performs the
worst, while the performance of the other three algorithms is between ABCCA-C25 and
ABCCA-L5. The performance of these six algorithms shows a promising trend, which
is related to the ratios of the neighborhood as presented in Table 1. The neighborhood
C25 has the largest ratio, while L5 holds the lowest ratio. It can be concluded that an
inherent relationship exists between the ratios of neighborhood and the performance of
relevant algorithms.

5. Conclusions. In this paper, ABC has been extended to ABCCA after elaborately
analyzing the effect of the onlooker bees and scouts with well-designed experiments. The
cellular structured neighborhood is introduced to the ABCCA to make individuals only
interact with their neighbors while preserving the population diversity. Besides, a more
intelligent and robust probability calculation method based on rank ordering is developed
to determine the qualified solutions regarded as onlooker bees. The experimental results
conducted on 15 benchmark functions indicate that ABCCA has superior capabilities in
terms of accuracy, robustness and efficiency.
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Table 5. Performance comparison among ABCCA with six neighborhoods

Algorithms ABCCA-L5 ABCCA-L9 ABCCA-C9 ABCCA-C13 ABCCA-C21 ABCCA-C25

F1
Mean 1.92e-72 2.41e-76 9.98e-76 2.86e-77 1.34e-77 7.72e-78
SD 2.70e-72 4.04e-76 1.26e-75 4.26e-77 2.09e-77 1.23e-77

F2
Mean 1.21e-69 4.90e-73 2.01e-72 8.80e-74 1.42e-74 1.46e-74
SD 1.11e-69 6.48e-73 2.36e-72 1.62e-73 2.09e-74 1.95e-74

F3
Mean 2.01e-73 2.45e-77 1.11e-76 3.62e-78 9.35e-79 2.73e-78
SD 2.48e-73 3.28e-77 1.37e-76 5.67e-78 1.78e-78 4.18e-78

F4
Mean −3.64e-12 −3.64e-12 −3.64e-12 −3.64e-12 −3.64e-12 −3.64e-12
SD 0 0 0 0 0 0

F5
Mean 6.46e-38 4.04e-40 1.06e-39 1.17e-40 5.58e-41 5.13e-41
SD 4.65e-38 2.38e-40 8.63e-40 6.88e-41 3.79e-41 4.20e-41

F6
Mean 7.18e+00 6.17e+00 6.39e+00 5.95e+00 5.28e+00 5.24e+00
SD 9.88e-01 8.99e-01 1.21e+00 9.52e-01 8.78e-01 9.69e-01

F7
Mean 0 0 0 0 0 0
SD 0 0 0 0 0 0

F8
Mean 1.99e-02 1.61e-02 1.61e-02 1.57e-02 1.44e-02 1.46e-02
SD 4.73e-03 4.15e-03 3.92e-03 3.94e-03 3.62e-03 4.30e-03

F9
Mean 2.51e-01 2.39e-01 2.43e-01 2.37e-01 2.29e-01 2.34e-01
SD 3.11e-02 2.73e-02 2.43e-02 3.00e-02 3.14e-02 2.84e-02

F10
Mean 9.87e-02 1.28e-01 8.28e-02 5.68e-02 2.80e-01 2.78e-01
SD 1.49e-01 2.25e-01 1.15e-01 8.58e-02 4.74e-01 5.72e-01

F11
Mean 0 0 0 0 0 0
SD 0 0 0 0 0 0

F12
Mean 0 0 0 0 0 0
SD 0 0 0 0 0 0

F13
Mean 0 0 0 0 0 0
SD 0 0 0 0 0 0

F14
Mean 4.81e-112 4.53e-126 9.30e-129 3.95e-134 8.51e-138 1.59e-139
SD 2.52e-111 3.15e-125 5.68e-128 1.68e-133 3.13e-137 5.38e-139

F15
Mean 1.26e-14 1.20e-14 1.15e-14 1.13e-14 1.02e-14 1.08e-14
SD 1.60e-15 2.12e-15 2.06e-15 2.79e-15 2.93e-15 2.87e-15

Our future work will focus on applying ABCCA on feature selection in text sentiment
analysis problems.
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