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Abstract. A quadrotor consists of a body fixed frame and four rotors which can generate
four independent thrusts. By varying the rotor speeds, one can control the pitch, roll,
and yaw attitude and can be moved to a desired position. The effect of disturbances such
as wind or weight on the quadrotor flight control can be quite significant, and can lead to
dangerous situations. The estimation and compensation mechanism of the disturbances
improves the stability and the positioning accuracy of the vehicle. This paper presents
an adaptive estimator of the wind disturbances and the mass of a quadrotor by using
accelerometer. An auto-tuning adaptive estimator for the disturbance and the mass in
the translational dynamics is derived. The performance of the proposed estimator is
verified both in the simulation and the experiment by using the MATLAB/Simulink and
a real quadrotor.
Keywords: Quadrotor, Adaptive estimator, Accelerometer measurement, Crazyflie2.0

1. Introduction. In recent years, the researches on control for stabilizing or flying of
multicoptor type UAV (UAVs) became one of the attractive areas [1]. A quadrotor consists
of a body fixed frame and four rotors which can generate four independent thrusts. By
varying the rotor speeds, one can control the pitch, roll, and yaw attitude and move to
a desired position [2]. Moreover, the center of mass can be placed to the center of its
body easily compared with a helicopter. For these reasons, it has already started using
for various industrial scenes such as surveying, guarding and maintenance of architecture.

Since a quadrotor has no mechanical stabilizer for the attitude stabilization besides
propellers, it is a serious drawback that slight unbalance of propeller thrust forces or
small amount of external disturbance make a quadrotor unstable. Furthermore, in the
case of payload delivery a mass of the quadrotor changes with payloads. Consequently, it
is one of the important issues that we estimate unknown disturbances or the parameters
using limited data obtained by equipped sensors, and guarantee its robustness against
the parameter variations by designing controller using estimator [3, 4]. Nowadays, the
disturbance observer based control methods are proposed for a quadrotor [5, 6]. The
disturbance observer can estimate disturbances as one of the states of the system. There-
fore, we are able to compensate these disturbances or can estimate changes of physical
parameters directly by using disturbance observer.

We have recently proposed the auto-tuning velocity estimator [7]. In this work, we apply
this estimator to an adaptive estimator with an auto-tuning gain in order to estimate the
disturbances and the mass based on the output model of the translational dynamics.
By focusing the fact that we can obtain accelerations of quadrotor in bodyframe from
Inertial Measurement Unit (IMU) basically mounted on quadrotor, we design an estimator
which gives the disturbance and the mass estimates with the acceleration signals. The
performance of the proposed estimator is verified by using MATLAB simulation. We also
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verify the performance of the estimator using the measurement data obtained by Bitcraze
AB’s crazyflie2.0.

2. Output Model Based on Accelerometer.

2.1. Quadrotor equipment. An Inertial Measurement Unit (IMU) has been mounted
on a quadrotor. In general, the IMU calculates the orientation and the attitude using
measured acceleration, angular velocity and angle values of three axes in the sensor fixed
frame. Basically, the IMU has the 3-axis rate gyros and accelerometers, so that we can
obtain the omni dimensional accelerations and the angular velocities. In this work, we
estimate the disturbances and the mass in the translational motion using accelerometers.

2.2. Output model for translational dynamics. The translational motion in the
body fixed frame can be written by u̇

v̇
ẇ

 =

 rv − qw
pw − ru
qu− pv

 +

 −g sin θ
g cos θ sinϕ
g cos θ cosϕ

 +
1

m

 0
0

−F

 +

 dx

dy

dz

 (1)

where
[
u v w

]T
is the body frame velocity vector,

[
p q r

]T
is the roll, pitch and

yaw rate vector,
[
ϕ θ ψ

]T
is the roll, pitch and yaw angle vector, m is the mass of

the quadrotor, F is the total thrust force,
[
dx dy dz

]T
is the disturbance vector in the

body fixed frame, and g is the gravity constant.
The outputs of the accelerometer of the quadrotor are given as in [2]:

ax = u̇+ qw − rv + g sin θ

ay = v̇ + ru− pw − g cos θ sinϕ

az = ẇ + pv − qu− g cos θ cosϕ.

From the translational dynamics (1), we obtain the relationships between the measured
accelerations and the disturbance as

ax(t) = dx(t) (2)

ay(t) = dy(t) (3)

az(t) = −F (t)

m
+ dz(t) (4)

Therefore, we can use the horizontal acceleration measurements, ax, ay, as the estimates
of the disturbances directly. In the case of a payload delivery, a mass of the quadrotor
changes with payload. Thus, dz and m must be identified simultaneously using the mea-
sured acceleration az. Since dz is time-varying, we approximate it as a basis function
expansion such as

dz(t) = θT ξ(t) (5)

θT =
[
θ0 θ1 θ2 θ3

]
(6)

ξ(t)T =
[

1 t
1+ϵt

t2

1+ϵ2t2
t3

1+ϵ3t3

]
(7)

where ξ(t) is a kind of the third order Taylor polynomial when ϵ = 0. We select ϵ as a
small positive number considering the boundedness of the basis function for all time.

Equation (4) can be rewritten in the vector form:

az(t) =
[
θm θT

] [
−F (t)
ξ(t)

]
(8)

where θm = 1
m

.
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3. Design of Adaptive Estimator. The goal of this work is to estimate dz and m
simultaneously using the measured acceleration az from the output model:

az(t) =
[
θm θT

] [
−F (t)
ξ(t)

]
(9)

To design an adaptive estimator, we assume that we can also measure the control input
signal F (t). Using the available signals

[
−F (t) ξ(t)

]
, we design the adaptive update

law for the unknown parameters
[
θm θT

]
. We apply the auto-tuning adaptive update

law proposed in [7].
The output estimator is given by

âz(t) =
[
θ̂m θ̂T

] [
−F (t) + n(t)

ξ(t)

]
− ke(t) (10)

where e(t) = âz(t)−az(t), k is a positive number, and n(t) is an additive random noise to
satisfy a persistently exciting condition. From [7], the auto-tuning adaptive update laws
for the unknown parameters are derived as

˙̂
θm(t) = −γ0γ(t)(n(t) − F (t))e(t) (11)

˙̂
θ(t) = −γ0γ(t)ξ(t)e(t) (12)

γ̇(t) = δ1γ(t)
2e(t)2 − δ2γ(t)

n (13)

where γ0, δ1, and δ2 are positive constants, and n is an odd number. The second term of
the right-hand equation in the last equation is a forgetting factor. The estimate of the
disturbance dz is given by

d̂z1(t) = θ̂(t)T ξ(t) (14)

4. Numerical Simulation. Consider the following signal:

az(t) = dz(t) −
1

m
(F (t) + n(t)) (15)

m = 5 (16)

dz(t) = 0.5 sin 25t (17)

F (t) = 1 + p(t) (18)

where p(t) is a rectangular pulse function with the amplitude 0.5, the period 2[sec], and
the duty cycle 50%, and n(t) is a Gaussian white noise with N(0, 0.5). Equations (15)
and (9) are different, because we add an additive noise to the input signal to satisfy the
sufficient richness. We choose the parameters of the estimator as δ1 = 500, δ2 = 0.05,
k = −50 and γ0 = 500.

Figures 1 and 2 show the output signal az(t) and the input signal F (t), respectively.
Figures 3 and 4 show the estimates of the mass and the disturbance. The adaptive
estimator works out satisfactorily. In this simulation, the additive noise in the input is
emitted as a part of the output az and plays an important role to satisfy the persistently
exciting condition. Figure 5 shows the output estimation error.

5. Experiment Result. In this section, we verify the performance of our estimator for
the actual environment by using the actual quadrotor. We use Bitcraze AB’s crazy-
file2.0 for the experiment. The crazyflie2.0 is a small quadrotor equipped with an IMU
which consists of a 3-axis accelerometer, a rate gyro and a magnetometer. Furthermore,
crazyflie2.0 also equips a high precision pressure sensor: LPS25H. For controlling their
flight, the crazyflie2.0 mounts a micro control unit (MCU): STM32F405 as the flight con-
trol processor. The duration of flight is 7 minutes by charging battery for 40 minutes.
This aircraft is an open-source develop platform, so that we can find or improve the circuit
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Figure 1. Output signal az(t)
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Figure 2. Input signal F (t)
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Figure 3. Estimate of
m−1, m̂−1(t)
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Figure 4. Disturbance
dz(t) (solid line) and its

estimate d̂z(t) (dotted line)
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Figure 5. Output estimation error e(t)

diagrams, the hardware specifications, and the firmware source. In this experiment, we
use the Log blocks function which is the pre-installed macro function in order to output
measured data, and then we apply these data into the MATLAB/Simulink environment
to estimating the unknown parameters of the translational dynamics.

5.1. Experiment test bed and available data.

5.1.1. Requirements for estimation. To use the proposed estimator, following output sig-
nals are needed
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• acceleration about vertical axis in bodyframe: az(t)
• control inputs: F (t).

5.1.2. Available sensor outputs from crazyflie2.0. The crazyflie2.0 can output the mea-
sured data of the accelerometer and the rate gyro in the IMU. The sampling rate is
1000[Hz]. Then these raw data are applied into a low pass filter with cutoff as 260[Hz] to
removing high frequency noises. After attenuating high frequency noises, the sensor out-
puts are obtained using I2C at the sampling rate 500[Hz], and then the data are subjected
to the first order low pass filter processing with the cutoff frequency set to 50[Hz]. At
last, the sample values are remapped into acceleration of gravity G [kg·m/s2]. Since the
accelerometer also measures the acceleration occurring by the gravity, we have to remove
the influence of the gravity to get only the translational acceleration. Thus, we introduce
the Madgwick’s filter [8] to substitute the effect of gravity. Since the crazyflie2.0 has
already been implemented with the controller with the Madgwick’s filter, we obtain the
calibrated data from these filters as the output of sensor values.

5.1.3. Control inputs from crazyflie2.0. The crazyflie2.0 controls the attitude and the
height by using a PID controller. At this process, the control signals are sent to the
motor driver as 16bit integer, and the motor driver supplies an appropriate voltage to
each motor by using 8bit PWM signals. In other words, since the true control inputs
are signals from the motor driver, we can represent the relationship between the motor
control signals δ∗ and the thrust force of each motor and propeller δ∗ generated as

F∗ = k∗δ∗ (19)

where k∗ is specific constants of the propellers. However, we have to find the relationship
between the propeller-constants k∗ and the control signals δ∗ experimentally, and it is
difficult to measure them accurately during flights. Alternatively, we cite the data certifi-
cated by Bitcraze AB, and we introduce the following transfer function about the sum of
all thrust forces and 8bit PWM signals pwm:

F =
(
0.409 × 10−3 · pwm2 + 140.5 × 10−3 · pwm− 0.099

)
× 10−3 (20)

5.2. Test condition. In the experiment, we estimate the mass of the crazyflie2.0 and the
external disturbance affected for vertical orientation of bodyframe by using our adaptive
estimator. The experimental equipment is shown in Figure 6. We connect the airframe
with the anchor by string, and then we handle the crazyflie2.0 as a kite that attaches
string. Since the maximum length of the string is set as 0.7[m], it is shorter than the
maximum reaching height of the crazyflie2.0. If the crazyflie2.0 flies out of the range of
the string, the force of the tension is applied as an external disturbance. Assuming that
the vertical component of the tension in the bodyframe is a non-periodic disturbance for
the crazyflie’s dynamics, we verify the performance of our proposed estimator. The true
value of the mass of the crazyflie2.0 is 27 × 10−3[kg]. For the estimation, we collect two
values: the acceleration about the vertical orientation without the gravity and all of the
propeller thrust forces. We log these data in the logging interval 20[ms].

5.3. Estimation result. In this section, we present the estimation result. To evaluate
the estimation performance of the disturbance, we calculate the actual disturbance dz as

dz = az + F/
(
27 × 10−3

)
assuming the mass is known. We choose the parameters of the estimator as δ1 = 500,
δ2 = 0.05, k = −50 and γ0 = 500. The additive noise is selected as a Gaussian white
noise with N(0, 0.5).

Figures 7 and 8 show the true acceleration value az and the total thrust force F . Figure
9 shows the estimate of the inverse of the mass. The estimated value does not converge
to the true value 1

27×10−3 . Figure 10 shows the comparison of the true acceleration value
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Figure 6. Experimental environment of crazyflie2.0. The string is
mounted on crazyflie’s body and the other side is attached to the anchor.
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Figure 7. Measurement data
of acceleration value az(t)
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Figure 8. Total thrust force F (t)
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Figure 9. Estimate of
m−1, m̂−1(t)
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Figure 10. True distur-
bance dz(t) (solid line)

and its estimate d̂z(t)
(dotted line)

dz and the estimated value d̂z. The estimate is close to the real value since 2[sec]. Figure
11 represents the output estimation error. The gap between the simulation in Chapter
4 and the experiment is that we cannot add a noise to the input signal. The additive
noise is used only in the estimator. Thus, the lackness of the sufficient richness condition
causes the estimation errors. It should be noted that small variance of the additive noise
fails to estimate the disturbance.
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Figure 11. Output estimation error e(t)

6. Conclusion. In this paper, we presented the adaptive estimator for the disturbance
and the mass using the translational dynamics. We show that the estimation performance
is dependent on the additive noise to the input signal. It is currently under consideration
about the estimation for rotational dynamics because of a problem that we have to estab-
lish the method to measure the thrust force for each motor generated respectively. If we
can represent the relationship between thrust forces and control signals, we can calculate
all control inputs.
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