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Abstract. This paper investigates the problem of consensus for multi-agent systems
with switching topologies and stochastic delays. The switching topologies and time-delays
are governed by Markov chains. By using Lyapunov function approach, sufficient condi-
tions are established such that consensus is achieved. A numerical example is provided
to verify the effectiveness of the proposed approach.
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1. Introduction. With the rapid expansion of control theory [1], much attention has
been paid to multi-agent systems (MASs) due to its potential applications in various
areas, such as in robots, formation of unmanned vehicles [2], and attitude alignment of
satellite clusters [3], and an overview of applications of MASs is also shown in [4]. Olfati-
Saber and Murray gave a theoretical framework for analysis of consensus algorithms for
MASs [5,6]; after that, much work has been done on MASs. In [7], group consensus of
heterogeneous MASs with time delays is also studied.

Time delay is unavoidable since the physical limitations in communication channels,
time-response of actuators, etc. Based on this situation, much work has been done to
deal with the consensus problem subject to time delays, focusing on constant delays for
all agents’ interactions [8], non-uniform delays [9], and time-varying delays [10]. It is worth
mentioning that once the distance between two agents exceeds a prescribed communication
region, then, signal will not be received, which results in the change of topologies of the
network. The changes of time delay and topology occur randomly and abruptly, which is
reasonable to be described by Markov jump system (MJS).

As an important kind of hybrid system, MJS has been widely used in MASs due to
its accurate description of random changes of the system structure or parameters. Some
work has been done and many results have been published in literature for MASs with
Markov jump parameters, with the help of MJS in [11]. In [12], robust H∞ controller
is designed for saturated uncertainties MJS. Yin et al. studied the problem of a class of
extended MJS subject to time-delay and actuator saturation nonlinearity, and designed
an observer-based H∞ controller in [13]. Yin et al. focused on the design of a robust fault
detection filter for a class of uncertain discrete-time MJS with non-homogeneous jump
processes in [14]. In [15], results for consensus of MASs subject to Markov jump delays
are obtained, and it is also extended to second-order MASs systems with Markov jump
delays [16,17]. [18] focuses on the consensus of MASs where each agent is supposed to
be an MJS with event-triggered protocols. [19] aims to address the stationary consensus
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problem for leaderless heterogenous MASs delays which are subject to Markov chain.
Note that the changes of delay and communication topology are common phenomena in
practical applications; however, results have been obtained only under the assumption
that one of them is governed by Markov chain, see in [16-19]; motivated by this, the
study in this paper takes two random factors into consideration, and it aims to address
consensus problem for MASs with topologies and delays governed by Markov chain. To
the authors’ best knowledge, no attempt work has been done on this subject, and it can
be regarded as an extension of the result in [15].

The remainder of this paper is organized as follows. In Section 2, system definitions
and assumption are given. Main results for consensus are given in Section 3. In Section 4,
simulation results are provided to verify the effectiveness of the proposed method. Finally,
some conclusions are shown in Section 5.

Notation. 1n and 0n are column vectors of ones and zeros, respectively, of dimension
n; λmax(L), λmin(L) denote the maximum and minimum eigenvalue of L. M > 0 (M < 0)
means that M is a positive (negative) definition matrix; E{} denotes the mathematical
expectation. MT means the transpose matrix of M ; and * denotes the symmetric block
in a matrix. Matrices, if dimensions are not indicated explicitly, are assumed to be
compatible with algebraic operations. La,τb

denotes Laplacian matrix when time-delay is
τb and topology structure is a.

2. Problem Statement and Preliminaries.

2.1. Some graph theory. A simple directed graph is denoted by G = (V,E,A), where
V = {v1, v2, . . . , vn} is the set of n vertices, and E represents the set of directed edges
connecting them, denote aij = (vi, vj) where (·) is the directed edge function, given by
aij = (vi, vj) ∈ E. A = [aij] denotes the adjacency matrix. A spanning tree is a spanning
subgraph without cycle. Obviously, in a graph with a spanning tree, there exists at least
one node whose information transfers to all others, then the node is said to be globally
reachable. The union of the topology set (in the switching case) has a globally reachable
node. Let L = [lij] with lii =

∑n
j=1 aij, i = 1, 2, . . . , n and lij = −aij, for i ̸= j. An

important property of the Laplacian matrix is L1n = 0n.
In this paper, we do study on communication network union topologies with a directed

spanning tree.

2.2. Multi-agent systems. We consider a group of n agents with first-order discrete-
time dynamics,

xi(k + 1) = xi(k) + ui(k), i = 1, 2, . . . , n (1)

where xi(k) is state of the ith agent and ui(k) is the control input generated by the control
law given below:

ui(k) =
∑
j∈Ni

aij (τa
b ) [xj (k − τa

b ) − xi (k − τa
b )],

a ∈ T1 = {1, 2, . . . ,m}, b ∈ T2 = {1, 2, . . . , q}
(2)

Ni = {1, 2, 3, . . . , n}, j ̸= i. τa
b denotes a time-delay τb in the ath topology structure. a

and b are independent parameters and satisfy independent Markov chain. The transition
probability matrix is defined as: πrs = P (bk = r|bk−1 = s) is the probability of transition
from time-delay τs at time k − 1 to time-delay τr at time k, and the transition matrix
is Π1 = [πrs], r, s ∈ T2; λαβ = P (ak = β|ak−1 = α) is the probability of transition from
mode α at time k − 1 to mode β at time k, and the transition matrix is Π2 = [λαβ],
α, β ∈ T1. aij(τ

a
b ) denotes the case a time-delay τb in the ath topology structure of aij,

where 0 ≤ λαβ < 1, 0 ≤ πrs < 1 and
∑m

β=1 λαβ = 1,
∑q

s=1 πrs = 1. Substituting (2) into

(1), we have
x(k + 1) = x(k) + La,bx (k − τa

b ) (3)
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where x(k) =
[
xT

1 , x
T
2 , . . . , x

T
n

]T
is state vector, and La,b is a Laplacian matrix related to

a, b.

Assumption 2.1. τa
b is from a following finite integer set Γ.

Define the error as δi(k) = xi(k)−x1(k), i = 2, 3, . . . , n, and the error vector is obtained
as follows: δ(k) = [ δ2(k) δ3(k) · · · δn(k) ]T . After some algebraic manipulations, we
have an error dynamic system as:

δ(k + 1) = δ(k) + L̂a,bδ (k − τa
b ) (4)

let, lij(τ
a
b ) = lij, lii(τ

a
b ) = lii, then

L̂a,b = −(L2:n,2:n − 1n−1L1,2:n) = −


l22 − l12 l23 − l13 · · · l2n − l1n

l32 − l12 l33 − l13 · · · l3n − l1n
...

...
. . .

...
ln2 − l12 ln3 − l13 · · · lnn − l1n

 (5)

where L2:n,2:n = [lij] ∈ R(n−1)×(n−1), i, j = 2, 3, . . . , n, L1,2:n = [ l12 l13 · · · l1n ]. In
(5), lij(τ

a
b ) = −aij(τ

a
b ), lii(τ

a
b ) =

∑n
j=1 aij(τ

a
b ), i, j = 1, 2, . . . , n.

Before proceeding, we need the following definition of stability.

Definition 2.1. For a given initial mode and state, system (3) is mean-square consensus if
system (4) is stochastically stable in the mean-square sense, i.e., limt→∞E

{
δT (t)δ(t)

}
→

0 holds.

Next, we will investigate the consensus problem for system (4).

3. The Sufficient Condition for Consensus.

Theorem 3.1. System (4) with random delays and switching topologies governed by
Markov chains is mean square consensus if there exist matrices P > 0, Qρ,v > 0, Zρ,v > 0,

Mρ,v and L̂a,b, v = 1, 2, . . . , q, ρ = 1, 2, . . . ,m, ∀r = 1, 2, . . . , q, ∀α = 1, 2, . . . ,m such that
it holds. [

Y11(rα) Y12

∗ Y22

]
< 0 (6)

where
Y22 = −diag {Z1,1, · · · , Z1,q, · · · , Zm,1, · · · , Zm,q}

Y12 =
[√

τ 1
1M11 · · ·

√
τ 1
qM1q · · ·

√
τm
1 Mm1 · · ·

√
τm
q Mmq

]

Y11(rα) =



ϕ0 ψ1,1(rα) · · · ψ1,q(rα) . . . ψm,1(rα) · · · ψm,q(rα)
∗ ϕ1,1(rα) 0 0 . . . 0 . . . 0

∗ ∗ . . .
... . . .

... . . .
...

∗ ∗ ∗ ϕ1,q(rα) . . .
... . . .

...

∗ ∗ ∗ ∗ . . .
... . . .

...

∗ ∗ ∗ ∗ ∗ ϕm,1(rα) . . .
...

∗ ∗ ∗ ∗ ∗ ∗ . . .
...

∗ ∗ ∗ ∗ ∗ ∗ ∗ ϕm,q(rα)


+

[
m∑

ρ=1

q∑
v=1

Mρ,v,−M1,1, . . . ,−M1,q, . . . ,−Mm,1, . . . ,−Mm,q

]

+

[
m∑

ρ=1

q∑
v=1

Mρ,v,−M1,1, . . . ,−M1,q, . . . ,−Mm,1, . . . ,−Mm,q

]T
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ϕβ,v(rα) = λαβπrvL̂
T
β,vPL̂β,v −Qβ,v + λαβπrvL̂

T
β,v

(
q∑

v=1

m∑
ρ=1

τ ρ
vZρ,v

)
L̂β,v

ϕ0 =
m∑

ρ=1

q∑
v=1

Qρ,v, ψβ,v(rα) = λαβπrvPL̂β,v, v = 1, . . . , q, β = 1, . . . ,m.

Proof: We consider the following Lyapunov function candidate:

V (k) = V1(k) + V2(k) + V3(k) (7)

where
V1(k) = δT (k)Pδ(k)

V2(k) =
m∑

ρ=1

q∑
v=1

k−1∑
i=k−τρ,v

δT (i)Qρ,vδ(i)

V3(k) =
m∑

ρ=1

q∑
v=1

−1∑
ξ=−τρ,v

k−1∑
φ=k+i

ηT (φ)Zρ,vη(φ)

η(φ) = δ(φ+ 1) − δ(φ)

From system (4), we have

V3(k) =
m∑

ρ=1

q∑
v=1

−1∑
ξ=−τρ,v

k−1∑
φ=k+i

δT (φ− τ ρ
v ) L̂T

ρ,vZρ,vL̂ρ,vδ (φ− τ ρ
v )

Let ζT (k) =
[
δT (k), δT

1,1(k), . . . , δ
T
1,q(k), . . . , δ

T
m,1(k), . . . , δ

T
m,q(k)

]
, where δm,q(k) denotes

δ(k − τq) in the mth topology structure. For free matrices

Mρ,v =
[
MT

0(ρv),M
T
11(ρv), . . . ,M

T
1q(ρv), . . . ,M

T
m1(ρv), . . . ,M

T
mq(ρv)

]T
Mρ,v here has the same dimensions with ζ(k), and we have the following identities:

ζT (k)Mρ,v

δ(k) − δ(k − τ ρ
v ) −

k−1∑
l=k−τρ

v

η(l)

 = 0

Then,

E{∆V (k)} = E{∆V1(k)} + E{∆V2(k)} + E{∆V3(k)}

≤ 2

q∑
s=1

πrs

m∑
β=1

λαβδ
T (k)L̂α,rδ(k − τα

r )

+

q∑
s=1

πrs

m∑
β=1

λαβδ
T (k − τα

r )L̂T
α,rPL̂α,rδ(k − τα

r )

+
m∑

ρ=1

q∑
v=1

[
δT (k)Qρ,vδ(k) − δT (k − τ ρ

v )Qρ,vδ(k − τ ρ
v )
]

+
m∑

ρ=1

q∑
v=1

q∑
s=1

πrs

m∑
β=1

λαβδ
T (k − τα

r )L̂T
α,rτρ,vZρ,vL̂α,rδ(k − τα

r )

−
m∑

ρ=1

q∑
v=1

k−1∑
l=k−τρ

v

δT (l − τ ρ
v )L̂T

ρ,vZρ,vL̂ρ,vδ(l − τ ρ
v )

+2
m∑

ρ=1

q∑
v=1

ξT (k)Mρ,v

δ(k) − δ(k − τ ρ
v ) −

k−1∑
l=k−τρ

v

η(l)
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+
m∑

ρ=1

q∑
v=1

k−1∑
l=k−τρ

v

[
ξT (k)Mρ,v + ηT (l)Zp,v

]
Z−1

p,v

[
MT

ρ,vξ(k) + Zρ,vη(l)
]

Taking a further step, we have

E{V (k + 1) − V (k)} ≤ ζT (k)
[
Y11(rα) − Y12Y

−1
22 Y

T
12

]
ζ(k) (8)

Then, condition (6) ensures that E{∆V (k)} < 0.
Let W (rα) = Y11(rα) − Y12Y

−1
22 Y

T
12 < 0. We assume that −λmax(W (rα))I ≤ W (rα) ≤

−λmin(W (rα))I, where λmax(L) > 0, λmin(L) > 0.
Then

E{V (k + 1) − V (k)} ≤ ζT (k)[W (rα)]ζ(k) ≤ −λmin(W (rα))||ζ(k)||2 ≤ −γ||ζ(k)||2 (9)

with 0 < γ = min{λmin(W (rα)), r = 1, 2, . . . , q, α = 1, 2, . . . ,m}. Summing up (9) from
k = 0, it is obtained that

E{V (k + 1) − V (0)} ≤ −γ
∞∑

w=0

E
{
||ζ(w)||2

}
(10)

which leads to,

k∑
w=0

E
{
||ζ(w)||2

}
≤ 1

γ
E{V (0) − V (∞)} ≤ 1

γ
E{V (0)} (11)

Meanwhile, note that ||ζ(w)||2≥||δ(w)||2, w=0, 1, 2, 3, . . ., then, we have
∑∞

w=0 ||ζ(w)||2 ≥∑∞
w=0 ||δ(w)||2. Therefore,

∑∞
w=0E{||δ(w)||} ≤ 1

γ
E{V (0)} < ∞ from which we conclude

that limw→∞E {||δ(w)||2} = 0, and from Definition 2.1, the error dynamic system (4) is
mean square stable. This completes the proof.

Note that L̂β,v in (6) cannot be solved in LMI directly for the existence of ϕβ,v(rα).
Then to deal with this problem, a separation method proposed in [8] is used here to make
it solvable; for simplicity, we omit it.

4. Numerical Example. In this section, we present a numerical example to verify the
design procedure and the effectiveness of the proposed method. Figure 1 shows the
switching communication topology of six agents. An adjacency matrix A in 1(a) has
the upper following general form and 1(b) has the lower following general form:

A =


0 0 a13 (τ 1

b ) 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

a41 (τ 1
b ) 0 0 0 0 0

0 a52 (τ 1
b ) 0 a54 (τ 1

b ) 0 0
0 0 0 0 0 0



A =


0 0 0 0 0 0
0 0 0 a24 (τ 2

b ) 0 0
0 0 0 a34 (τ 2

b ) 0 0
0 0 a43 (τ 2

b ) 0 0 0
0 0 0 0 0 a56 (τ 2

b )
0 0 0 a64 (τ 2

b ) 0 0


The delay set is Γ =

{
τ 1
1 = τ 2

1 = 6s τ 1
2 = τ 2

2 = 16s τ 1
3 = τ 2

3 = 20s
}
. Switching

topologies transition probability matrix Π1 and delays transition probability matrix Π2

are

Π1 =

[
0.5 0.5
0.3 0.7

]
, Π2 =

 0.2 0.5 0.3
0.4 0.2 0.4
0.3 0.1 0.6
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(a) G(1) (b) G(2)

Figure 1. Multi-agent system subject to time-varying delays, composed
of six agents with switching topologies G(1) and G(2)
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Figure 2. Consensus with switching adjacency matrices

The initial state of six agents is x(0) = [ −2 0 2 4 6 8 ]T . We get Laplacian
matrices L1,1, L1,2, L1,3, L2,1, L2,2 and L2,3 by solve LMI(6).

The three matrices L1,1, L1,2 and L1,3 are associated with the delays 6s, 16s, 20s
respectively in case G(1), and last three matrices L2,1, L2,2 and L2,3 are associated with
the delays 6s, 16s and 20s in case G(2). Figure 2 shows the states of multi-agent systems
under control where consensus is achieved.

5. Conclusion. This paper aims to address consensus problem for MASs with topolo-
gies and delays governed by Markov chain in discrete system. In future works, a novel
Lyapunov function is put forward in order to solve the random variation of topology and
delay. The simulation results present that the consensus of MASs with jump topologies
and delays can achieve when topology contains spanning tree. We hope to solve the
sampling-time in un-uniform case.
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