ICIC Express Letters ICIC International (©)2018 ISSN 1881-803X
Volume 12, Number 3, March 2018 pp. 213-220

DEVELOPMENT OF NDA FREE VLSI DESIGN FLOW FOR 0.6uM
COMMERCIAL FABRICATION

NAOHIKO SHIMIZU

School of Information and Telecommunication Engineering
Tokai University
2-3-23, Takanawa, Minato-ku, Tokyo 108-8619, Japan
nshimizu@tokai.ac.jp

Received September 2017; accepted December 2017

ABSTRACT. We will present the development of NDA free VLSI design flow for 0.6um
commercial fabrication. Our design flow will help users to democratize VLSI design. The
flow consists of two parts. One is the layout design with a scalable open design rule. The
other is to translate the scalable design rule to the specific rules provided by fabrication
company under NDA. Ordinary user does not have to care on the second flow but stay
at the first flow which will be enough to fabricate their VLSI chip. The chip with this
method was fabricated in success.

Keywords: VLSI design flow, NDA free, EDA, Fabrication

1. Introduction. The Very Large Scale Integration (VLSI) chip is the fundamental tech-
nology in modern world. To fabricate VLSI chip, usually a user has to use the Process
Design Kit (PDK) provided by the fabrication company with signing up a Non-Disclosure
Agreement (NDA). The PDK consists of the process design rules, device models, cell li-
braries, etc., and it will designate the ability of the fabrication company. The NDA will
prevent users to share their knowledge and/or experiences between them even in univer-
sities. In US, Mead and Conway had changed the situation with scalable MOS design
[2]. Their method provides an open design rule based on a unit lambda and applies the
same rule to every fabrication process only with changing the lambda value. It worked
well during 1980s to 1990s, and many universities fabricated their original VLSI chips
through MOSIS service [3]. Nanometer technology breaks the MOS scalability and the
scalable MOS method became obsolete. MOSIS still provide fabrication opportunity with
scalable CMOS (SCMOS) rules, but in 2017, they only provide 0.5 micron ON Semicon-
ductor chips. Prof. Akita, Kanazawa Univ. started MakeLSI community [1] to share the
knowledge and experiences among users for democratizing VLSI design. We started with
Kitakyushu FIAS process because FAIS will not request us to sign up NDA [8].

The author has fabricated several VLSI chips with open source Electronic Design Au-
tomation (EDA) tool set Alliance by LIP6, UPMC, France [6,7]. Figure 1 shows the LSI
chips we designed with Alliance. The author created own PDKs for Alliance from the
NDA based foundry PDKs.

With these experiences, we decided to introduce a virtual layout layer based on MOSIS
SCMOS rules and convert the layout against a real one with a translation method. This
method will not require users to sign up NDA, because users only read the MOSIS open
rules. In this paper, we present the method of the translation with a virtual layout based
on MOSIS SCMOS DEEP submicron rules against Phenitec 0.6 micron process rules and
the fabrication process.

213

214 N. SHIMIZU

(a) ()

FIGURE 1. VLSI chips which were designed with Alliance: (a) Rohm
0.35um, (b) ON Semiconductor 1.2um, (c) Rohm 0.18m

2. Problem Statement and Preliminaries.

2.1. Alliance symbolic layout. Alliance uses symbolic rules internally. The famous
symbolic rule in VLSI design is the lambda rule which is proposed by Mead and Conways
in 1980. The lambda rule defines every dimension as multiples of a unit size lambda. The
lambda is selected as a half of the gate width of a minimum transistor. It works only
for over micron technologies and the simple method had problems for sub micron layout
rules.

Alliance uses more sophisticated method to convert symbolic layout to real one. Figure
2 shows an example of transistor conversion. In this example, a symbolic transistor with 1
unit for width and 3 unit for length is provided by user. The transistor will be converted
to the required layers such as poly silicon, active, and N select (implant). Not only the
layers, but we are also able to convert the size of each layer with a conversion database.
The conversion database must be written for each fabrication process to follow the design
rules. In [2], we developed a cell library whose target is MOSIS SCMOS DEEP and also
developed the conversion database and design rule check database for the technology.
We succeeded in building the chip layout design flow for MOSIS SCMOS DEEP with
Alliance tool set. MOSIS open design rules are not directly applicable to any commercial
fabrication processes. We expect that it must be compatible with TSMC CLO018 for which
MOSIS claims to be able to fabricate the chip on their web site.

Figure 3 shows our logic VLSI design flow with Alliance and NSLCore. We use NSL for
the design entry because the VHDL used in Alliance has some obscured restrictions and
is a little difficult to manage. The NSL compiler is able to generate Alliance compatible

AciveWr |
-—
Pplywr .

L} E , L :

A

W
1"

1
1
L.

>

—_—— - -

Ls=3 ctive.Lr [Poly,Nselect.Wr

e

M
-
P

W

Emmm .

W Nselect Wr f

Symbolic Real
Layout Layout

FIGURE 2. Symbolic to real layout conversion on Alliance

ICIC EXPRESS LETTERS, VOL.12, NO.3, 2018 215

High level HDL: NSL graal: symbolic, 1

Y o
| layout editor ocp: symbolic placer
A
nsl2vh: NSL compiler /r 4 symbolic layout
: . nero: symbolic router
) | Alliance VHDL jx: layout L |
vasy: VHDL compiler Versus — I symbolic Iayou|t
\ netlist copnpare Alliance: symbolic layout
Jlow level vhdl behavidr /
™y

boom: boolean optimizer

A

s2r: symbolic to real J

|
convertor

¥ Vvhdl behavior
.

P
boog: logic synthesizer |L—

A

’GDS 1: layout ‘

cougar: spice net extractoﬂ_.

J spice netlist
yagle: behavior extractor

b
vhdl structyre
loon: netlist optimizer L7

“
vhdl structpre

i \ vhdl behavior
proof: formal proof on vhdl

druc: design rule checker

F1cURE 3. VLSI design flow with Alliance

VHDL with “-vasy” option that is specially designed for Alliance. Users have to write
their logic in NSL or they can use symbolic editor graal to write the symbolic layout
directly. As in Figure 3, we use three checking methods for our design: 1) design rule
check with druc, 2) layout versus schematic with lvx and 3) formal proof on behavioral
vhdl with proof.

There are four databases which users have to prepare. In [2], we developed these
databases for MOSIS SCMOS DEEP: 1) cell library that includes all logic cells to make
their layout, the symbolic layout of each logic cells, the vhdl behavior file for each logic
cell, and optionally real layout of cells which is written in GDSII or CIF; 2) symbol to
real layout conversion database which is the most important and perhaps most difficult
database which the users have to write; 3) SPICE parameters to generate SPICE netlist
and to calculate the delay, power consumption, etc.; 4) design rule checking database and
messages catalog.

2.2. Using layout which follows MOSIS SCMOS DEEP as a virtual layer. Users
have to develop the databases for a specific process with the data which is provided by the
fabrication company under NDA. This development will prevent users from sharing their
design and/or experiences among other users. Therefore, we develop a new method to use
MOSIS SCMOS process as a virtual layer for the Phenitec 0.6um process. Unfortunately,

216 N. SHIMIZU

paly poly
min 180nm i 0.6um
T poly
over

act . poly .
over sep.

diff
width

width

vth
MOSIS SCMOS DEEP Target process

FIGURE 4. Translation of segments

the SPICE parameter is not able to scale and we will not use the parameter for MOSIS
SCMOS DEEP. However, we will extract parameters from test and evaluation chip. The
cell library has been developed under the symbolic rules. We expect that the library
will work without modification with 0.6pum process. Therefore, we should care about the
symbolic to real translation database and the design rule check database.

Figure 4 shows the translation example from MOSIS SCMOS DEEP to a target process.
The real dimensions are under NDA and will not be able to disclose in our paper then we
will not show detailed dimensions in the figure.

As shown in this figure, the virtual layers will not directly be corresponding to the real
layers. Some virtual layer will be converted to a set of real layers such as the diffusion
which will be converted into the active, the implant, the vth layers, respectively. We can
adjust the segments length and width and the overhangs on the layout are easily modified
with the symbolic to real translation database. The separation requirements are much
difficult to manage. The origin of each segment in the layout is defined on the layout
file in symbolic coordinate and when we fix the basic unit for the translation, what we
can do to make more separation between segments is to change the width or offset of the
segments. It will not be flexible as required. Sometimes the only thing we can do is to
expand the unit length on this translation. Even if we expand the unit length, we can
keep the gate width as the minimum with the translation database, because we can adjust
the width of segments.

We have to write the design rule check database following the design rules of the
fabrication company. The rule itself is covered under NDA and we cannot disclose the
rules in this paper. Instead of the design rules for the fabrication process. Figure 5 shows
a part of the design rule checking database for MOSIS SCMOS DEEP. We will develop
the corresponding database for the target process.

Figure 6 shows the design flow we develop. With the MOSIS layer, we will have a
symbolic layout and netlist and behavioral description in VHDL. We intend ordinary
designer to use only the MOSIS rules because one has to sign up NDA to see the target
rules. After the ordinary designer completes his design with MOSIS rules, our method
translates the deign to the target rules with our original translation table.

We applied the design flow for all of the logic cells in the cell library and the target
design itself. The formal proof of the whole design usually is not mandatory because we
proved the functionality of each cell with formal verification and the connection between
the cells is proved with the layout versus schematic checking.

ICIC EXPRESS LETTERS, VOL.12, NO.3, 2018 217

caracterise RDS_POLY (

regle 310 : largeur >= 0.18 ;

regle 311 : longueur_inter >= 0.18 ;
regle 320 : notch »= 0.27 ;

)
relation RDS_POLY , RDS_POLY (
regle 321 : distance axiale min 0.27 ;

Check the CHANNEL shapes

caracterise CHANNEL (
regle 322 : notch >= 0.27 ;

!
relation CHANNEL , CHANNEL (
regle 323 : distance axiale min 0.27 ;

FIGURE 5. Part of the design rule checking database for MOSIS SCMOS
DEEP process with lambda = 90nm

Design with MOSIS SCMOS DEEP.
Follow figure 3 and get symbolic
layout file.

MOSIS RULES
TARGET RULES

symbalic layout | | netlist | | behavior

NDA required

DRUC S2R LVX proof
dslanvils cHaMaF Symbol to Layout versus Formal verify
g Real schematic

GDS

F1GURE 6. Our VLSI design flow with MOSIS virtual layer

Alliance uses symbolic rules for the place and routing. Unlike lambda based design,
Alliance with the translation database modifies not only the width and length of segments
but the layers which consist of the segments. If the translation database has some prob-
lems, it is very possible that we will have some cells or design which will not meet the
design rules. Therefore, the target design rule database is very important for this flow,
because we have to verify the target translation database with the design rule checker on
the way to develop the translation database.

3. Main Results. With our target specific symbolic to real conversion database, we
successfully converted the symbolic layout of 8-bit CPU which was produced with MOSIS

218 N. SHIMIZU

SCMOS DEEP design rules to the layout of the target rules. Also, we check our layout
with the design rule checker with the target rules. There is no design rule error in the
converted layout as Figure 7.

E ~/Documents/Develop/alliance-check-toolkit/benchs/xpu - [m} X

$ druc u_core

Flatten DRC
Delete MBK f I Xpu_core
Load Flatten Rules : . tc/phen6. rds

Xpu_core

Create Ring u_core_rng
Merge Errorfile

Merge Error Instanc
instructionCourante

xpu_core.drc is empty: no errors detected.

ocuments, 1 Tiance-cl

FI1GURE 7. Design rule check results in no error

B Dresl: xpu_core - o X B Oreal: xpu_core_scn - o X

File Edit Window Create View Tools Setup ﬁelpl File Edit Window Create View Tools Setup Help

Enterbasepont | 1x:157.200]v :162.0400x 157.200Dy 16204d Measure | Select paint [Enter nase point

T szansl v :540.600Dx 523 650Dy 540600 Measure | Select point

(a) (b)

FIGURE 8. GDS-II layout of 8-bit CPU: (a) 0.6um rule, 522 x 540um, (b)
0.18um rule, 157 x 162um

ICIC EXPRESS LETTERS, VOL.12, NO.3, 2018 219

Figure 8 shows the two GDS layouts which are produced from the same symbolic layout
of a simple 8-bit CPU. The CPU is written in 56 lines of NSL. It has 16 instructions. We
follow Figure 3 design flow to make the symbolic layout. The symbolic layout contains
3190 transistors. Figure 8(a) is the layout on our target 0.6um technology, and Figure 8(b)
is on MOSIS SCMOS DEEP with lambda equal to 90nm. They are very similar because
the symbolic layout is just the same and only symbolic to real conversion database is
different between them.

In addition to the 8-bit CPU core, we designed test circuits to check our standard cell
library and a ring oscillator to check the circuit performance. We also designed input,
output, power supply cells to meet the dimension requirement of the foundry chip. As
noted above, all the cells were designed with SCMOS DEEP design rules and converted
against the foundry specific rules.

Our PDK has the Design Rule Check (DRC) database and we checked our design before
fabrication. In addition to our own DRC, we also used foundry provided DRC database
for Mentor Graphics’ Caribre which is the standard DRC tool for the foundry. Our design
had no problem with them either. The logic design will be merged with the chip frame
provided by foundry, and the merged GDSII data was sent to the foundry.

Figure 9 shows the picture of fabricated chip.

ANATEAA

DRSS UD P A

I B R R |

B2

i |
o |
-
-
7= |

FEF P EFEEE R R

A

Y ErE EEEEE LR

FiGURE 9. Fabricated VLSI chip

4. Conclusions. We successfully convert our NDA free design to a commercial fabrica-
tion process with Alliance. The converted layout is DRC clean and we will be able to
fabricate the layout with Phenitec 0.6pum process. Now when we write this paper, we are
on the way to tape out our design, and we have to finish our layout with I/O cells. 1/O
cells in Alliance are a little big to fit in our design, and then we will rewrite the cells to
shrink and fit in our dimension.

We believe with this methodology, ordinary people do not have to look at the NDA
papers because they only use MOSIS SCMOS DEEP design rules and open source sym-
bolic cell libraries. All the required conversion can be done on symbolic layout and only
the licensed person will process the conversion. Therefore, we will achieve our objective
to democratize LSI making without NDA on our methodology.

220 N. SHIMIZU

Acknowledgment. We express special thanks to Phenitec Semiconductor Corp. for their
support and providing an opportunity to fabricate the experimental chip. We also ex-
press special thanks to Mr. Akihiro Yamada who carries the shuttle service on the tech-
nology and informed us for this opportunity. We express special thanks to Prof. Junichi
Akita who started MakeLL.SI community. We also express special thanks to Marie-Minerve
Louerat and Jean-Paul Chaput in LIP6, UPMC, France who have exchanged the basic
ideas for these topics and have deeply supported Alliance and related tools.

REFERENCES

[1] J. Akita, Open source LSI design & fabrication project for distributed IP development, International
Conference on Analog VLSI Circuits, Boston, USA, 2016.

[2] C. Mead and L. Conway, Introduction to VLSI Systems, Addison Wesley, 1980.

[3] MOSIS, https://www.mosis.com/.

[4] J. E. Stine et al., FreePDK v2.0: Transitioning VLSI education towards nanometer variation-aware
designs, IEEFE International Conference on Microelectoronic Systems Education, pp.100-103, 2009.

[6] G. A. Sanca et al., Development of a sCMOS interoperable process design kit and an open set of
standard digital cells, Argentine Conference of Micro-Nanoelectronics, Technology and Applications,
pp.6-10, 2016.

[6] N. Shimizu, J.-P. Chaput and M.-M. Louerat, Development of a NDA free cell library for 180nm
CMOS technology with FOSS EDA tools, The 5th Asia Symposium on Engineering and Information,
Hanoi, Vietnam, pp.63-71, 2017.

[7] T. Hosokawa, T. Imai, T. Higuchi and N. Shimizu, The application scalable cell libraries to SCMOS
with ROHMO0.18um process and the learning method, ITC-CSCC2011, pp.895-898, 2011.

[8] FAIS, http://www.ksrp.or.jp/e/info/fais.html.

