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Abstract. This paper investigates a robust optimal guaranteed cost control problem for
a class of switched fuzzy systems with time delays. The asymptotical stability of guaran-
teed cost control problem for subsystems is not assumed. Based on the multiple Lyapunov
functions method, we design a non-fragile state feedback controller and a switching law
such that the closed-loop system is asymptotically stable and the guaranteed cost function
possesses an upper bound. Then, an optimization problem of the non-fragile guaranteed
cost control is solved. Simulation results verify the feasibility and effectiveness of the
proposed approach.
Keywords: Switched fuzzy systems, Robust control, Guaranteed cost control, Non-
fragility, Uncertainty, Multiple Lyapunov functions, Optimization, Time delays

1. Introduction. Switched systems belong to a special class of hybrid systems. A
switched system consists of a family of continuous-time or discrete-time subsystems and
a switching rule that orchestrates the switching between them. Due to their success in
practical applications and importance in theory development, switched systems have been
attracting considerable attention during the last decades. There are a large number of
results on analysis and synthesis of switched systems [1-4].

As we know, fuzzy systems are very complex nonlinear systems. Since its first proposi-
tion in 1985 [5], Takagi-Sugeno (T-S) fuzzy model has been proven as an effective approach
to represent a nonlinear system, and various works have been done [6-8]. In this type of
fuzzy model, local dynamics in different state space regions are represented by linear mod-
els. The overall model of the system is achieved by fuzzy blending of these linear models
through nonlinear fuzzy membership functions. Besides, time delays are inherent features
of many physical process and also are big sources of instability and poor performances.
The T-S fuzzy model with time delays is used as the model for the time-delay nonlinear
system [9].

Especially, if each subsystem of a switched system is a fuzzy system, then the switched
system is a switched fuzzy system. A switched fuzzy system revolves according to the
“hard switching” between the subsystems which are fuzzy systems and the “soft switch-
ing” among the linear models within a T-S fuzzy model. These two switching strategies
and their interaction lead to very complex behaviors of switched fuzzy systems, so the
results for switched fuzzy systems in the literature are rather limited [10,11].

On the other hand, it is well understood that parametric uncertainties are principal
factors responsible for the degraded stability and performance. We usually consider the
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system model uncertainty only; however, in practice, the controller has a certain degree
of errors. These errors could also destabilize the closed-loop system. A controller for
a given plant is thus expected to be insensitive or non-fragile to errors. Therefore, the
robust stability against parametric uncertainties not only in the plant but also in the
implementation of the controller is an important problem [12,13].

Furthermore, it is desirable that a system can be asymptotically stable and provided
with a level of performance index. Non-fragile guaranteed cost control problems are stud-
ied in fuzzy systems [14] and in switched systems [15]. To the best of our knowledge, for
uncertain switched fuzzy systems with time delays, no results on the non-fragile guaran-
teed cost control problem have been reported up to now.

Motivated by the above considerations, for a class of switched fuzzy systems with time
delays, this paper studies the optimal guaranteed cost control problem which is robust not
only for the system uncertainty but also for the controller fragility. None of subsystems
are assumed to be asymptotically stable. A sufficient condition for asymptotical stability
of the closed-loop system and an upper bound of the guaranteed cost function are estab-
lished based on the multiple Lyapunov functions method. Meanwhile, a non-fragile state
feedback controller and a switching law are designed. Compared with the existing results
on switched fuzzy systems, the results of this paper have two distinct features. Firstly,
the optimal guaranteed cost control problem is studied for switched fuzzy systems for the
first time, especially for systems with delays. Secondly, unlike the classical guaranteed
cost problem, the fuzzy controller gain uncertainty affects system matrices and enters the
cost function.

2. Problem Statement and Preliminaries. Consider a class of uncertain nonlinear
switched systems with time delays which can be described by the following switched T-S
fuzzy model.

Plant Rule:

Ri
σ : If x1 is Ωi

σ1, x2 is Ωi
σ2, . . ., xn is Ωi

σn,

Then ẋ(t) = (Aσi + ∆Aσi(t))x(t) + Adσix(t − τ) + Bσiuσ(t) (1)

where σ = σ(t) : [0, +∞) → M = {1, 2, . . . , N} is a piecewise constant function called a
switching signal, corresponding to it, the switching sequence∑

= {x0; (l0, t0), (l1, t1), . . . , (lk, tk), . . . |lk ∈ M }

means that the lkth subsystem is active with the initial state x0 and initial time t0 when
t ∈ [tk, tk+1); i = 1, 2, . . . , rl, rl is the number of inference rules; Rk

l denotes the ith fuzzy
inference rule; n is the number of state variables; Ωi

ln represents the fuzzy set; x(t) ∈ Rn

is the system state; ul(t) is the control input; Ali, Bli and Adli are constant matrices
with appropriate dimensions; τ denotes the bounded constant time delay, and τ is non-
negative integer. ∆Ali(t) is a time varying matrix function representing the uncertainty
of the system.

By the singleton fuzzification, product inference engine and center average defuzzifica-
tion, the globe model of the system (1) can be denoted as

ẋ(t) =
rσ∑
i=1

hσi(x(t))[(Aσi + ∆Aσi(t))x(t) + Adσix(t − τ) + Bσiuσ(t)] (2)

In the model (2), hσi(x(t)) can be stated as

hσi(x(t)) =

∏n
p=1 µi

σp(xp)∑τσ

i=1

∏n
p=1 µi

σp(xp)
(3)

where µi
σp(xp) denotes the membership function of xp in the fuzzy set Ωi

σp for p =
1, 2, . . . , n. For simplicity, hσi(t) denotes hσi(x(t)), 0 ≤ hσi(t) ≤ 1,

∑rσ

i=1 hσi(t) = 1.
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Based on the parallel distributed compensation (PDC) technology [16], the state feed-
back controller is considered.

Controller Rule:

Ri
σ : If x1 is Ωi

σ1, x2 is Ωi
σ2, . . ., xn is Ωi

σn,

Then uσi(t) = (Kσi + ∆Kσi(t))x(t) (4)

where Kσi is the controller gain to be designed, and ∆Kσi(t) is the uncertainty of the
controller gain.

Finally, the globe controller is represented by

uσ(t) =
rσ∑
i=1

hσi(t)(Kσi + ∆Kσi(t))x(t) (5)

Remark 2.1. Usually, the controller gain uncertainty includes additive and multiplicative
norm-bounded forms. In this paper, only an additive form is taken into consideration to
solve the fragility problem.

Definition 2.1. The guaranteed cost function of the system (2) is given by

J =

∫ ∞

0

[
xT (t)x(t) + uT

σ (t)uσ(t)
]
dt (6)

Definition 2.2. Consider the system (2). If there exist the state feedback controller ul(t)
(l ∈ M) for each subsystem, a switching law σ(t) and a positive scalar J∗ such that for all
admissible uncertainties, the closed-loop system is asymptotically stable and the value of
the function (6) satisfies J ≤ J∗, then J∗ is called a non-fragile guaranteed cost (NGC)
and ul(t) is called a guaranteed cost control law.

Remark 2.2. The NGC problem is different from the classical guaranteed cost problem,
because ∆Kli(t) not only affects system matrices but also enters the cost function J∗.

The objective of this paper is to design a guaranteed cost control law and a switching
law such that the system (2) is asymptotically stable and the guaranteed cost function
(6) is no more than an NGC.

3. Main Result. In this section, we will present a solvability condition for an NGC
problem based on the multiple Lyapunov functions method. Then, an optimal non-fragile
guaranteed cost problem will be discussed.

Theorem 3.1. For the system (2), if there exist non-positive scalar βlv, positive definite
matrices Pl, Pv, Q and matrices Kli (l, v ∈ M, v ̸= l) satisfying the following matrix
inequalities ∏

lij
+Tlij + PlSlijPl + Rlij +

N∑
v=1,v ̸=l

βlv(Pl − Pv) < 0 (7)

where∏
lij

= PlAli + AT
liPl + PlBliKlj + KT

ljB
T
li Pl + PlAlj + AT

ljPl + PlBljKli + KT
li B

T
ljPl,

Slij = DliD
T
li + BliDaljD

T
aljB

T
li + DljD

T
lj + BljDaliD

T
aliB

T
lj + AdliQ

−1AT
dli + AdljQ

−1AT
dlj,

Tlij = 2EaliE
T
ali + EliE

T
li + 2EaljE

T
alj + EljE

T
lj + 2I + 2Q,

Rlij = KT
lj

(
I − DaljD

T
alj

)−1
Klj + KT

li

(
I − DaliD

T
ali

)−1
Kli,

then the system (2) is asymptotically stable for the guaranteed cost control law (5) under
the switching law

σ = arg min
{
xT (t)Plx(t), l ∈ M

}
(8)
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and the cost function (6) possesses an NGC J∗ = min
{
xT

0 Plx0, l ∈ M
}

for any nonzero
initial state x0. (I denotes identity matrix).

Proof: Choose a Lyapunov function of the system (2)

Vl(x(t)) = xT (t)Plx(t) +

∫ t

t−τ

xT (s)Qx(s)ds (9)

and compute time derivative along the state variables of the system (2).

V̇l(x(t)) = ẋT (t)Plx(t) + xT (t)Plẋ(t) + xT (t)Qx(t) − xT (t − τ)Qx(t − τ)

=

rl∑
i=1

rl∑
j=1

hli(t)hlj(t)x
T (t){[Ali + ∆Ali(t) + Bli(Klj + ∆Klj(t))]Pl

+Pl[Ali + ∆Ali(t) + Bli(Klj + ∆Klj(t))]}x(t)

+

rl∑
i=1

rl∑
j=1

hli(t)hlj(t)
[
xT (t)Qx(t) − xT (t − τ)Qx(t − τ)

+xT (t − τ)AT
dliPlx(t) + xT (t)PlAdlix(t − τ)

]
≤

rl∑
i=1

rl∑
j=1

hli(t)hlj(t)x
T (t){[Ali + ∆Ali(t) + Bli(Klj + ∆Klj(t))]Pl

+Pl[Ali + ∆Ali(t) + Bli(Klj + ∆Klj(t))]}x(t)

+

rl∑
i=1

rl∑
j=1

hli(t)hlj(t)
[
xT (t)Qx(t) + xT (t)PlAdliQ

−1AT
dliPlx(t)

]
=

rl∑
i=1

h2
li(t)

{
xT (t)

[
I + (Kli + ∆Kli(t))

T (Kli + ∆Kli(t))

+PlAli + AT
liPl + PlBliKli + KT

li B
T
li Pl + Pl∆Ali + ∆AT

liPl

+PlBli∆Kli + ∆KT
li B

T
li Pl + Q + PlAdliQ

−1AT
dliPl

]
x(t)

−xT (t)x(t) − xT (t)(Kli + ∆Kli(t))
T (Kli + ∆Kli(t))x(t)

}
+

rl∑
i=1

rl∑
j=1

hli(t)hlj(t)
{
xT (t)

[
2I + (Kli + ∆Kli(t))

T (Klj + ∆Klj(t))

+(Klj + ∆Klj(t))
T (Kli + ∆Kli(t)) + PlAli + AT

liPl + PlBliKlj

+KT
ljB

T
li Pl + Pl∆Ali + ∆AT

liPl + PlBli∆Klj + ∆KT
ljB

T
li Pl + PlAlj

+AT
ljPl + PlBljKli + KT

li B
T
ljPl + Pl∆Alj + ∆AT

ljPl + PlBlj∆Kli

+∆KT
li B

T
ljPl + 2Q + PlAdliQ

−1AT
dliPl + PlAdljQ

−1AT
dljPl

]
x(t)

−2xT (t)x(t) − xT (t)(Kli + ∆Kli(t))
T (Klj + ∆Klj(t))x(t)

−xT (t)(Klj + ∆Klj(t))
T (Kli + ∆Kli(t))x(t)

}
≤

rl∑
i=1

h2
li(t)

{
xT (t)

[
I + KT

li

(
I − DaliD

T
ali

)−1
Kli + EaliE

T
ali + PlAli

+AT
liPl + PlBliKli + KT

li B
T
li Pl + PlDliD

T
liPl + PlBliDaliD

T
aliB

T
li Pl

+EaliE
T
ali + EliE

T
li + PlAdliQ

−1AT
dliPl + Q

]
x(t)

−xT (t)x(t) − xT (t)(Kli + ∆Kli(t))
T (Kli + ∆Kli(t))x(t)

}
+

rl∑
i=1

rl∑
j=1

hli(t)hlj(t)
{
xT (t)

[
2I + KT

lj

(
I − DaljD

T
alj

)−1
Klj



ICIC EXPRESS LETTERS, VOL.12, NO.3, 2018 273

+KT
li

(
I − DaliD

T
ali

)−1
Kli + EaliE

T
ali + EaljE

T
alj + PlAli + AT

liPl

+PlBliKli + KT
li B

T
li Pl + PlDliD

T
liPl + PlBliDaljD

T
aljB

T
li Pl + EaljE

T
alj

+EliE
T
li + PlAlj + AT

ljPl + PlBljKli + KT
li B

T
ljPl + PlDljD

T
ljPl

+PlBljDaliD
T
aliB

T
ljPl + EaliE

T
ali + EljE

T
lj + PlAdliQ

−1AT
dliPl

+PlAdljQ
−1AT

dljPl + 2Q
]
x(t) − 2xT (t)x(t)

−xT (t)(Kli + ∆Kli(t))
T (Klj + ∆Klj(t))x(t)

−xT (t)(Klj + ∆Klj(t))
T (Kli + ∆Kli(t))x(t)

}
By the inequality (7), from the S-procedure, whenever βlv ≤ 0 we have

Vl(x(t)) <

rl∑
i=1

h2
li(t)

[
−xT (t)x(t) − xT (t)(Kli + ∆Kli(t))

T (Kli + ∆Kli(t))x(t)
]

+

rl∑
i<j

rl∑
j=1

hli(t)hlj(t)
[
−2xT (t)x(t) − xT (t)(Kli + ∆Kli(t))

T (Klj + ∆Klj(t))x(t)

−xT (t)(Klj + ∆Klj(t))
T (Kli + ∆Kli(t))x(t)

]
= −

[
xT (t)x(t) + uT

l (t)ul(t)
]

< 0.

Integrating both sides of the expression above yields

J < −
∫ +∞

0

V̇l(x(t))dt = −
∞∑

k=0

∫ tk+1

tk

V̇lk(x(t))dt

= −[Vl0(x(t1)) − Vl0(x(t0)) + Vl1(x(t2)) − Vl1(x(t1)) + · · · ]
= Vl0(x(t0)) = xT

0 Pl0x0

= min
{
xT

0 Plx0, l ∈ M
}

= J∗.

Thus, the system (2) is asymptotically stable and the cost function (6) possesses an
NGC under the switching law (8). This completes the proof.

Remark 3.1. For non-switched fuzzy systems, [13] gives a stabilization result which is a
special case of Theorem 3.1.

Remark 3.2. The different feasible solutions can result in different cost upper bounds
in Theorem 3.1. It is a problem of how to optimize the matrix Pl in order to achieve
the minimal NGC of the closed-loop system. This problem will be solved in the following
theorem.

Theorem 3.2. An optimal non-fragile guaranteed cost J∗
opt can be achieved via solving

the following optimization problem:
min γ s.t. (7) and (

γ xT
0

x0 Pl

)
> 0, l ∈ M (10)

Proof: By Schur complement, it is easy to achieve a minimal cost upper bound J∗
opt =

min
{
xT

0 Plx0, l ∈ M
}

where P̃l are solutions of the optimization problem.

4. Example. In this section, we present an example according to the theorem in previous
section. Consider an uncertain switched fuzzy system composed of two subsystems.

A11 =

[
−22 10
−230 −10

]
, A12 =

[
−25 10
−300 −10

]
, A21 =

[
−22 10
200 −10

]
,

A22 =

[
−24 10
−300 −10

]
, Ad11 = Ad12 = Ad21 =

[
1 0
0 1

]
, Ad22 =

[
−1 0
0 1

]
,
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D11 =

[
1 0
1 0

]
, D12 =

[
2 0
1 −5

]
, D21 = D22 =

[
2 0
1 −4

]
,

E11 =

[
−10 0
0 0

]
, E12 =

[
−1 0.2
−6 0

]
, E21 = E22 =

[
1 −0.2
−5 0

]
,

B11 = B12 = B21 =

[
1 0
0 1

]
, B22 =

[
−1 0
0 1

]
,

Da11 = Da12 = Da21 = Da22 =

[
0.01 −0.1
0 0.1

]
,

Ea11 =

[
1 −1
−1 1

]
, Ea21 = Ea22 = Ea12 =

[
1 0
0 1

]
,

M11(t) = M12(t) = M21(t) = M22(t) = Ma11(t) = Ma12(t) = Ma21(t)

= Ma22(t) =

[
sin t 0
0 cos t

]
,

h11(x1(t)) = 1 − 1

1 + e−2x1(t)
, h12(x1(t)) =

1

1 + e−2x1(t)
,

h21(x1(t)) = 1 − 1

1 + e−2(x1(t)−0.3)
, h22(x1(t)) =

1

1 + e−2(x1(t)−0.3)
.

With MATLAB LMI toolbox, the positive definite matrices P1, P2 and feedback gain
matrices can be obtained.

Q =

[
1.7166 0.1450
0.1450 0.0758

]
, P1 =

[
5.2136 −0.1310
−0.1310 0.2015

]
, P2 =

[
4.2762 −0.1057
−0.1057 0.1812

]
,

K11 =

[
−5.1475 0.1267
−0.0572 −0.1939

]
, K12 =

[
−5.1419 0.1288
0.1090 −0.1889

]
,

K21 =

[
−0.5601 −0.5228
−0.0818 −0.1806

]
, K22 =

[
1.0824 −0.5972
0.1429 −0.1783

]
.

The simulation result of the system state trajectory with the initial state vector x(0) =
[ −1 1 ]T (adopted arbitrarily in the whole state space) is shown in Figure 1 for the sys-
tem (2). From Figure 1, state responses converge asymptotically as demonstrated by the
simulation under the switching law designed. Therefore, the system (2) is asymptotically
stable.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

t/s

x(
t)

x1
x2

Figure 1. The system state trajectory of the switched fuzzy system
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Additionally, a minimal cost upper bound J∗
opt = 4.6686 can be obtained from Theorem

3.2 with the initial state vector x(0) = [ −1 1 ]T .

5. Conclusion. In this paper, based on the multiple Lyapunov functions method, the
NGC problem for a class of uncertain switched fuzzy systems with time delays has been
investigated. The method adopted can provide wider design space for switched fuzzy
systems. Furthermore, an optimization problem which minimizes the NGC of the system
has be solved, which can be applied to practical systems, such as the robotics system.
Besides, it is assumed that all the state is measurable in this paper. When the state is
not measurable or is hard to measure, the output feedback and state observer problem
should be considered in future.
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