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Abstract. In this study, chaos synchronization problem of two gyroscopes is addressed.
The outputs of state variables are affected by noise disturbances. In addition, the param-
eters of the system are considered unknown. Therefore, an adaptive modified projective
control law and parameter estimation law are designed to control the behavior of the slave
chaotic gyroscope states to track the motion trajectories of the master chaotic gyroscope
system. The stability of the proposed method is verified by means of Lyapunov stability
theorem. Furthermore, the convergence of the estimated parameters to their correspond-
ing true values is evaluated. Finally the feasibility of the proposed method is shown by
some numerical simulations.
Keywords: Gyroscope chaotic system, Modified projective synchronization, Adaptive
control

1. Introduction. This paper concentrates on the controlling and synchronization of
chaotic gyroscope systems. In chaos theory, the behaviors of the nonlinear chaotic sys-
tems are studied. Chaotic systems are systems that are strongly sensitive to their initial
state variables, a phenomenon which is usually known as butterfly effect [1]. The control
and synchronization of chaotic systems have considerably attention during the last two
decades, because of the potential applications in many scientific fields, such as electron-
ics [2], physics [3, 4], chemistry [5], mechanics [6, 7], and secure communications [8]. In
this line, many chaotic systems are derived such as Chen chaotic system [9], Lü chaotic
system [10], Lorenz chaotic system [11], supply chain chaotic system [12], Chua chaotic
system [13], finance chaotic system [14] and gyroscope chaotic system [15]. The gyroscope
chaotic systems consist of the most famous dynamical systems in mechanical engineering.
Gyroscopes have attained considerable attention in optics, navigation, aeronautics and
aerospace engineering. Recently, many kinds of gyroscope systems have been introduced.
In addition, many applications from synchronization of gyroscope chaotic systems arise
including, secure communication [16], and controlling the spacecraft [17].

The ultimate goal of synchronization is to design an appropriate feedback controller
to force the state of the slave system to track the trajectories of the master states. To
this end, since the pioneering work by Pecora and Carroll in [18], a lot of synchronization
methods have been developed to synchronize two identical or non-identical chaotic sys-
tems. Active method [19, 20], adaptive method [11, 21, 22], phase method [23], lag method
[24], impulsive method [25], linear feedback method [26], nonlinear feedback method [27],
sliding method [28, 29], and projective method [30, 31, 32] are some of the studied synchro-
nization methods. Among them, projective method has got considerable attention due to
their flexibilities and potential ability to align the synchronization error to an arbitrary
scaling factor. To date, many chaos synchronizations related to the projective methods
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are developed to provide appropriate flexibilities. Modified projective method [33, 34],
function projective method [35, 36, 37], modified function projective method [38, 39],
generalized projective method [22, 40] and projective lag synchronization method [41] are
some generalization of projective methods. However, almost all these projective methods
can guarantee the controlling behavior of a chaotic system, especially gyroscope chaotic
system, namely, the motion trajectories of the slave system can asymptotically track the
motion trajectories of the master chaotic system state variables. Nevertheless, speedi-
ness in synchronization process is an important factor, which affects the effectiveness of a
controlling and synchronization approach. To this end, in this paper, an adaptive mod-
ified projective control law is derived to asymptomatically synchronize the behavior of
the master and slave of an identical chaotic system. For generality, the parameters of the
system are considered unknown and an parameter estimation law is designed to estimate
them and to achieve synchronization.

The dynamic behavior of gyro was firstly studied in [42]. Since then, the chaos con-
trol and synchronization of two gyroscope systems were studied by some researchers
[43, 44, 45]. For example, a new control approach to generalized projective synchronization
between symmetric gyroscopes with dead zone nonlinear inputs was proposed in [43]. And
also, the projective synchronization was modified in [45], and a modified synchronization
was introduced for chaotic dissipative gyroscope systems via backstepping control.

The rest of this paper is organized as follows. Some mathematical modellings are pro-
vided in Section 2, which describes a gyroscope system and its chaotic behavior. Section
3 presents the synchronization scheme. An appropriate feedback controller and param-
eter estimation strategy are presented to achieve synchronization. The stability of the
proposed method is verified by means of Lyapunov stability theorem. Then, some nu-
merical simulations are shown in Section 4, to validate the effectiveness of the proposed
synchronization method. Finally, some concluding remarks are given in Section 5.

2. Mathematical Modelling. In this section, some preliminaries about the gyroscope
system and its chaotic behavior are given. The dynamical equation representing the
behavior of a symmetric gyroscope with linear-plus-cubic damping mounted on a vibrating
base can be given based on the approach in [16] as follows:

θ̈ + α
(1 − cos θ)2

sin3θ
− β sin θ + c1θ̇ + c2θ̇

3 = f sin (ωt) sin θ (1)

where θ denotes the rotation angle, the fraction α2 (1 − cos θ)2 / sin2 θ presents the nonlin-

ear resilience, c1θ̇ indicates the linear and c2θ̇
2 indicates the nonlinear damping terms, α,

β, c1 and c2 are the parameters of the gyroscope system, which are considered unknown
along this paper and also f sin(t) shows the parametric excitation that models the base

excitation. Let x1 = θ and x2 = θ̇, and then the dynamical gyroscope system (1) can be
rewritten in the following dynamical form:

ẋ1 = x2

ẋ2 = −α
(1 − cos x1)

2

sin3x1

+ β sin x1 − c1x2 − c2x
3
2 + f sin (ωt) sin x1

(2)

When α = 100, β = 1, c1 = 0.5, c2 = 0.05, f = 35.5 and ω = 2, the behavior of the
gyroscope system (2) is chaotic. The phase portrait of the system (2) is shown in Figure
1, with these parameters and the initial state values as: x1 = 6 and x2 = 5.7.

3. Synchronization. Consider the gyroscope chaotic system (2) with uncertainty in its
parameters as the master system. Then, the follower system can be given in the following
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Figure 1. Phase portraits of the gyroscope chaotic system

form: 
ẏ1 = y2 + u1

ẏ2 = −α̂
(1 − cos y1)

2

sin3y1

+ β̂ sin y1 − ĉ1y2 − ĉ2y
3
2 + f̂ sin (ωt) sin y1 + u2

(3)

where y1 and y2 are the state variables of the response system and u1 and u2 stand for
the control input of the response system (3), to be designed. α̂, β̂, ĉ1, ĉ2 and f̂ are the
estimation of gyroscope system parameters α, β, c1, c2 and f , respectively.

Let the synchronization errors between the master gyroscope chaotic system (2) state
variables and their corresponding slave chaotic system (3) state variables be as follows:{

e1 = y1 − δ1x1

e2 = y2 − δ2x2
(4)
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where δ1 and δ2 are two different factors as modified projective scaling factors, which affect
the synchronization errors. Then, the dynamical representation of the synchronization
errors (4) can be obtained as follows:{

ė1 = ẏ1 − δ1ẋ1

ė2 = ẏ2 − δ2ẋ2
(5)

Then, the modified projective synchronization between master gyroscope chaotic system
(2) and the slave system (3) can be achieved if the synchronization errors (4) converge to
zero as time tends to infinity, i.e., limt→∞ |ei(t)| = 0, ∀i = 1, 2.

In the following theorem, a new adaptive controller is given based on the modified
projective synchronization (MPS) method to achieve such synchronization purpose.

Theorem 3.1. The master chaotic system (2) and its identical slave system (3) would
be synchronized if the control law and the parameter estimation law are set as follows:

u1 = −y2 + δ1x2 − k1e1

u2 = + α̂
(1 − cos y1)

2

sin3 y1

− β̂ sin y1 + ĉ1y2 + ĉ2y
3
2 − f̂ sin(t) sin y1 − k2e2

− δ2α̂
(1 − cos x1)

2

sin3 x1

+ δ2β̂ sin x1 − δ2ĉ1x2 − δ2ĉ2x
3
2 + δ2f̂ sin(ωt) sin x1

(6)

and, 

˙̂α = + e2δ2
(1 − cos x1)

2

sin3 x1
˙̂
β = − e2δ2 sin x1

˙̂c1 = + e2δ2x2

˙̂c2 = + e2δ2x
3
2

˙̂
f = − e2δ2 sin(ωt) sin x1

(7)

Proof: Let the Lyapunov stability function be as follows:

V =
1

2

(
e2
1 + e2

2

)
+

1

2

(
(α̂ − α)2 +

(
β̂ − β

)2

+ (ĉ1 − c1)
2 + (ĉ2 − c2)

2 +
(
f̂ − f

)2
)

(8)

It is clear that V is positive definite, when the parameters α, β, c1, c2 and f and their
corresponding estimations α̂, β̂, ĉ1, ĉ2 and f̂ are real. Then, the time derivative of the V
can be described as follows:

V̇ = e1ė1 + e2ė2 + (α̂ − α) ˙̂α +
(
β̂ − β

)
˙̂
β + (ĉ1 − c1) ˙̂c1 + (ĉ2 − c2) ˙̂c2 +

(
f̂ − f

)
˙̂
f (9)

Substituting the dynamical representation of system errors (5), followed by the dynamical
representations of master system (2) and slave system (3), we have:

V̇ = e1[y2 − δ1x2 + u1] + e2

[
−α̂2 (1 − cos y1)

2

sin3 y1

+ β̂ sin y1 − ĉ1y2 − ĉ2y
3
2 + f sin(ωt) sin y1

+ u2 + δ2α
(1 − cos x1)

2

sin3 x1

− δ2β sin x1 + δ2c1x2 + δ2c2x
3
2 − δ2f sin(ωt) sin x1

]
+ (α̂ − α) ˙̂α +

(
β̂ − β

)
˙̂
β + (ĉ1 − c1) ˙̂c1 + (ĉ2 − c2) ˙̂c2 +

(
f̂ − f

)
˙̂
f (10)

Finally, with substituting the proposed control law and the parameter estimation law,
one can get:

V̇ = −k1e
2
1 − k2e

2
2 (11)

which is negative definite, when the constants k1 and k2 are positive. Thus the theorem
is proved. Then, the motion trajectories of the slave system (3) can be asymptotically
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tracked by the state variables of the master gyroscope chaotic system (2), namely, the
synchronization between the master gyroscope chaotic system (2) and its slave system (3)
is achieved. Furthermore, the disparity amount between the parameter estimation and
their corresponding true unknown values converge to zero, as time tends to infinity.

4. Numerical Simulations. The main goal of numerical simulation of synchronization
methods is to verify the validity of the proposed controlling strategy for synchronization
of the two chaotic systems. In this section, some numerical results related to the synchro-
nization of gyroscope chaotic system are provided. The initial parameters are selected
randomly, to show the effectiveness of the proposed method.

For synchronization purpose, the parameters of the master chaotic systems are chosen
as: α = 100, β = 1, c1 = 0.5, c2 = 0.05, f = 35.5 and ω = 2. In addition, the initial
values of system parameters are set as: α̂ = 56, β̂ = 3, ĉ1 = 0.2, ĉ2 = 0.1 and f̂ = 11. The
initial values of the master gyroscope chaotic system (2) are taken as: x1(0) = 12 and
x2(0) = 10 and also the initial values of the slave system (3) are selected as: y1(0) = 1.5
and y2(0) = 2. The constant parameters are set as: k1 = 2 and k2 = 2. The proposed
chaos synchronization problem of master gyroscope chaotic system (2) and its slave chaotic
system (3) is carried out for modified scaling factors (δ1, δ2) = (1.03, 1.02).

The behavior of the master chaotic system (2) and its follower system (3) is given
in Figure 2. Furthermore, their corresponding parameter estimations are illustrated in
Figure 3. As it can be seen from these figures, the anticipated synchronizations between
the master gyroscope chaotic system (2) and its slave system (3) are accurately achieved.
Moreover, the disparity amount between the parameters of the gyroscope chaotic system
(2) and their estimations converges to zero as time goes to infinity.

5. Conclusion. In this paper, a chaotic controlling method is derived for synchronization
of the two identical gyroscope chaotic systems. Since, the parameters of the system are
considered unknown, then an adaptive control method based on the Lyapunov stability
theorem, adaptive control method and modified projective synchronization method is
designed to control the behavior of the gyroscope chaotic system to track the behavior of

0 1 2 3 4 5 6
5

10

15

0 1 2 3 4 5 6
-10

0

10

20

30

Figure 2. The state variables trajectories of the master gyroscope chaotic
systems (2) and its slave system (3)
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Figure 3. Parameter estimation errors

the master system state variables. Furthermore, the unknown parameters of the system
are estimated. The validity of the proposed synchronization method is proved by means of
Lyapunov stability theorem. Finally, some numerical simulations are shown to verify the
effectiveness of the proposed synchronization method. The results show the effectiveness
and feasibility of the synchronization scheme from both speed and accuracy points of
views.
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