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Abstract. The Werewolf game is a multi-player game based on conversation. It is one
of new targets of game artificial intelligence. In the game, each player plays a role and
aims for victory through communicating, deceiving, and detecting lies in messages from
other players. In this paper, we propose a method for detecting werewolves based on play-
ers’ conversation in natural language in the Werewolf game. In this method, each player
at a certain point of a game is represented as a vector, called player vector, based on all
his/her messages up to that point. It computes how likely each player is a werewolf using
a classifier in the space of player vectors. We verify its effectiveness through experiments
on logs of an online site of the game.
Keywords: Werewolf game, Game artificial intelligence, Skip-gram model, Vector rep-
resentations of words, Support vector machine, Neural network

1. Introduction. In recent years, artificial intelligence (AI) players outperform the best
human players in major perfect-information extensive-form games such as chess, shogi,
and the game of Go. Many researchers are now aiming to develop good AI players in
more difficult games. The Werewolf game is one of such games. It is a multi-player game
based on conversation, in which each player plays a role and aims for victory through
communicating, deceiving, and detecting lies in messages from other players. It is not an
extensive-form game: It has no predetermined shape of the game tree because all players
can send messages at any time. Each player has infinite choices of what to say in a
natural language. There are some secret conversations in which only limited players can
participate. Because of these properties, it is very difficult for each player to predict the
flow of a game. For this reason, search algorithms that are extremely useful in extensive-
form games are useless in this game. A research project called the “AIWolf Project1”
has been started and the competition is held every year since 2015. It is expected that
development of good AI players in this game leads to understanding human intelligence
for making groups, communities, or societies and getting along well in them through
communication.

In the Werewolf game, players are divided into two camps: the werewolf camp and the
villager camp. Players in the villager camp cannot identify who the werewolves are. A
key factor for victory of the werewolf camp is that each werewolf pretends well to be a
villager. A key factor for victory of the villager camp is to detect werewolves based on
messages from other players.

In this paper, we propose a method for detecting werewolves based on players’ conver-
sation in natural language in the Werewolf game. This method can be used as a support
tool for human players who need suggestions about identities of the other players. In
this method, all words in all the messages from each player in a game are represented as

1http://aiwolf.org/en/
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continuous vectors, which are learned by a skip-gram model [1]. The player at a certain
point of the game is represented as a normalized vector based on the vectors of all the
words in all his/her messages up to that point. We name it a player vector. In the space
of player vectors, a classifier is learned to distinguish werewolves from villagers. We can
compute how likely each player is a werewolf using this classifier. We try a support vector
machine (SVM) classifier and a neural network (NN) classifier for being incorporated in
our method. The original SVM algorithm was proposed as a linear classifier. SVM classi-
fiers have been widely used as excellent nonlinear classifiers since Boser et al. [2] proposed
a way of applying the kernel trick to the original one in 1992. NNs have been studied for a
long time. They have been studied extensively around since a Google research team suc-
ceeded in training an NN to recognize cats in images in 2012 [3]. This paper is organized
as follows. Section 2 describes the outline of the Werewolf game, the AIWolf Project, and
other previous works related to the game. Section 3 describes the details of our proposed
method. In Section 4, we verify its effectiveness through experiments on logs of an online
site of the game. Section 5 concludes the paper and discusses the future work.

2. The Werewolf Game.

2.1. Outline of the game. In the Werewolf game, players are divided into two camps:
the werewolf camp and the villager camp. Though players in the role of werewolves
know who the werewolves are, players in the other roles cannot. The game proceeds in
alternating day and night phases. In a day phase, all the players have a conversation with
lies and decide one player to be executed by voting. All the werewolves also have a secret
conversation to decide one player who they will kill at that night. At the end of the day
phase, the execution is held. In the night phase, the werewolves kill a player. Then, those
who survive proceed to the next day phase.

The villager camp wins if the villagers kill off all the werewolves. The werewolf camp
wins if the werewolves kill enough villagers so that the numbers are even. Some villagers
have special abilities: Each day, the seer can conduct divination on a player, the psychic
can expose the identity of the dead, and the knight can protect a player from a werewolf
attack. Some human player, the madman, belongs to the werewolf camp and aims for the
victory of the werewolf camp.

2.2. The AIWolf Project. The AIWolf Project aims for encouraging development of
good AI players in the Werewolf game. It has been developing the AIWolf server, which
provides a game table for players and serves as the moderator of the game. It has also
been developing a communication protocol between the players. In this protocol, the
available vocabulary and sentence patterns are limited. Therefore, you cannot talk about
everything you want. In addition, there are few options of wording. We think that it may
be a critical feature in complicated communications, such as deceiving others or detecting
lies. Therefore, we aim for detecting werewolves based on natural language conversation
between human players rather than communications in this protocol.

Participants of the AIWolf Project create AI players which can play the game actually
with other AI players. Our method cannot play the game by itself. At this point, we
think that it can be useful as a support tool for human players.

2.3. AI methods for the Werewolf game. In the Werewolf game, it is extremely
important for villagers to deduce who the werewolves are. Kajiwara et al. [4] proposed
such a method for AI players in the AIWolf competition. In this method, each player is
represented by several features that are important to judge if he/she is a werewolf. In the
space of these features, this method classifies between werewolves and villagers using an
SVM classifier. It is different from our method on the point that it detects werewolves
based on conversation between AI players that uses the limited protocol. Moreover, the
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important features are designed by human designers. We aim for autonomous extraction
of important features from natural language conversation.

Lin et al. [5] proposed a set of inference rules for limiting candidates of the roles based
on players’ conversation in natural language. They have not described how to implement
the natural language processing (NLP). This set of rules can decide whether each player
has the possibility of being a werewolf or not. It cannot decide how likely he/she is a
werewolf. On the other hand, the objective of our method is to decide it.

As an AI method with NLP, Hirata et al. [6] proposed a method for automatic tagging of
messages in the Werewolf game among human players. The method can annotate messages
with three types of tags: revealing oneself as some role, telling something about execution,
and telling something about divination. These tags have only superficial information. The
annotated messages may include lies. We aim for developing a method that can have a
deep insight into messages for detecting lies.

3. Proposed Method. We have developed a method for detecting werewolves based on
players’ conversation in natural language in the Werewolf game. In the method, firstly,
all messages are divided into words. This process is necessary when handling a non-
segmented language, such as Japanese. We use the morphological analyzer MeCab2 with
the neologism dictionary mecab-ipadic-neologd and a handmade slang dictionary for di-
viding messages in Japanese. Secondly, all words in all the messages from each player
are represented as continuous vectors, which are learned by a skip-gram model. Thirdly,
player vectors are computed at all times after sending a message based on the word vec-
tors, each of which represents the sender of the message. Fourthly, all player vectors are
classified between werewolves and villagers by a classifier. Finally, the method computes
how likely each player is a werewolf based on the outputs of the classifier. We call the
degree of likelihood of being a werewolf a wolfiness score.

3.1. Vector representations of messages. We use the skip-gram model [7] for repre-
senting all words in all messages as continuous vectors. It is a model for learning word
vectors using an NN. It places word vectors close to each other if the words are often used
in similar contexts. By using it, word vectors have a simple mathematical property: Addi-
tion of word vectors can often produce meaningful results. For example, vec(“Germany”)
+ vec(“capital”) is close to vec(“Berlin”). This model is suitable for using in our method,
in which vector representations of messages and players are calculated in the space of
word vectors as mentioned below. We use a new variant of the skip-gram model proposed
by Bojanowski et al. [1], in which each word is represented as a bag of character n-grams.
This model can take account of subword information, so it can convert rare words not
in the vocabulary of the training data into vectors. The reason why we have adopted
this model is that conversations in the Werewolf game include a lot of slang and new
words. We use the zero vectors for representing any words that cannot be converted in
this model.

The vector representation of each message is defined as the normalized sum vector of
the vectors of all the words in the message:

mp,i =

∑np,i

j=1 wp,i,j∥∥∑np,i

j=1 wp,i,j

∥∥ ,

where mp,i is the i-th message from player p in the game, np,i is the number of the words
in the message, and wp,i,j is the j-th word in the message.

2MeCab ver. 0.996. http://taku910.github.io/mecab/
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3.2. Player vectors. At the time of sending each message, a player vector of the sender is
defined as the normalized sum vector of the vectors of all the messages sent from him/her
up to that point:

vp,i =

∑i
j=1 αi−jmp,j∥∥∥∑i
j=1 αi−jmp,j

∥∥∥ , (1)

where vp,i is the player vector of player p at the time of sending i-th message in the game.
Each player has a lot of player vectors, each of which represents him/her at the time of
sending each message. α ∈ (0, 1] is the forgetting factor.

3.3. Computation of the wolfiness score. All player vectors are classified between
werewolves and villagers by a classifier, and the wolfiness scores of all the players are
computed based on the outputs of the classifier. We try an SVM classifier and a three-
layer NN (3LNN) classifier for being incorporated in our method. In the SVM classifier,
we use the soft-margin technique and the Gaussian kernel. In the 3LNN classifier, we use
the softplus activation function in all neurons, softmax cross entropy as the loss function,
and Adam [8] as the optimizer. The input layer has the same number of neurons as the
number of dimensions of the player vectors and receives one of them. The output layer
has two neurons, each of which indicates how likely the inputted player vector belongs to
the werewolf camp or the villager camp.

Since voting for execution is held every day in the game, each player has to select
another as a suspected werewolf every day. In judging each player on the i-th day, our
method uses all his/her player vectors on the first to i-th day as training or test data.
When using the SVM classifier, all the test data of each player are classified by a trained
SVM, and the wolfiness score is defined as the percentage of being judged as a werewolf.
When using the 3LNN classifier, output values are computed for all the test data of each
player by a trained 3LNN, and the wolfiness score is defined as the mean of all the output
values of the neuron for the werewolf camp. In the case of using the proposed method as a
support tool, it can recommend a player with the greatest wolfiness score as an execution
target.

4. Experiments and Discussion. In this section, we verify the effectiveness of the
proposed method through experiments on logs of an online site of the Werewolf game,
“WolfBBS: G3”. We use the logs of fifteen-person games in the experiments, each of which
includes three werewolves, one madman, and eleven other villagers. We have collected
the logs of 900 fifteen-person games from Game #121 to Game #1688. The logs of 600
games have been selected randomly to compose the training data set, which is used for
both learning word vectors by the skip-gram model and training the SVM and 3LNN
classifiers. Since the madman belongs to the werewolf camp, the classifiers are trained to
judge his/her player vectors as werewolves. The logs of the other 300 games compose the
test data set. The length of a game changes according to the progression of the game.
Table 1 shows the numbers of ongoing games on the second to ninth day in the training
and test data sets. No game lasted more than nine days.

Table 1. Numbers of ongoing games

2nd day 3rd day 4th day 5th day 6th day 7th day 8th day 9th day
Training
data set

600 600 599 581 519 380 178 9

Test data set 300 300 299 288 248 186 82 7

3http://www.wolfg.x0.com/



ICIC EXPRESS LETTERS, VOL.12, NO.4, 2018 317

In our method, the forgetting factor α in Equation (1) is set to 0.98. We have verified
in preliminary experiments that the performance with this forgetting factor is a little
better than that without forgetting. In the skip-gram learning, the dimension size of
word vectors is set to 300, which is the same as that used in [1]. The other parameters
for the skip-gram learning are set as follows: the size of the context window = 10; the
number of negatives sampled = 10; the number of training epochs = 100; and the minimal
number of word occurrences = 5. In the SVM classifier, the penalty parameters of the
error terms for class Werewolf and Villager are set to 27.5 and 10.0, respectively. The
reason of this difference is that the villager camp has 2.75 times as many members as
the werewolf camp. The other parameters for the SVM classifier are set as follows: the
variance of the Gaussian kernel = 50.0; and the limit on iterations within solver = 10000.
The parameters for the 3LNN classifier are set as follows: the number of neurons in the
hidden layer = 500; the step size in Adam α = 0.001; the exponential decay rates for the
moment estimates in Adam β1 = 0.9 and β2 = 0.999; and the small value parameter for
the numerical stability in Adam ϵ = 10−8. Many of these parameters are set to commonly
used values.

Table 2. Percentages of werewolves among players selected by the 3LNN classifier

2nd day 3rd day 4th day 5th day 6th day 7th day 8th day
Setting #1 46.62 54.85333 54.31438 50.71528 46.54839 42.63441 37.03704
Setting #2 46.76 54.80667 53.92642 50.72222 46.77419 43.07527 37.77778
Setting #3 47.3 55 54.05351 49.875 46.89516 43.32258 37.50617
Setting #4 46.63333 51.52667 54.92977 50.10417 46.58065 43.15054 38.29630
Setting #5 46.59333 55.31333 54.37458 50.20833 46.75 42.77419 36.88889
Setting #6 46.58667 54.84 54.42809 51.125 46.57258 42.48387 37.08642
Setting #7 46.98667 54.70667 53.72575 49.91667 46.40323 42.84946 37.23457
Setting #8 25.32 54.08 54.44816 49.875 46.64516 42.15054 36.69136
Setting #9 25.07333 28.28667 27.09030 26.63194 27.79839 42.79570 28.51852
Setting #10 25.81333 28.04667 27.27759 25.95139 27.06452 28.30108 28.29630
#Success 7 8 8 8 8 9 8
Range 151-200 201-250 451-500 251-300 151-200 101-150 301-350
Average 46.78286 54.39083 54.27508 50.31771 46.64617 42.80406 37.31481
SD 0.248650 1.129739 0.347463 0.444943 0.144681 0.337290 0.489915

In the experiments, our proposed methods select a player with the highest wolfiness
score on the second to eighth day. As shown in Table 1, we have so few data on the
ninth day that we do not use them in the experiments. We calculate the percentages of
werewolves among the selected players on the second to eighth day. For comparison, we
calculate the percentages of the votes for werewolves among all the votes of villagers (not
including the madmen) on the second to eighth day in the test data set. Since villagers
always try to vote for a werewolf, these values are considered as the accuracy rates in the
voting by the villagers. We also calculate the percentages of werewolves among survivors,
which are equal to the accuracy rates for werewolf detecting in random voting.

In the experiments with the 3LNN classifier, we perform 10 runs with different random
seeds, each of which is used to initialize a weight setting. Table 2 shows the percentages
of werewolves among players selected by the 3LNN classifier. The values are the average
percentages over 50 epochs after learning has converged. The 13th row shows the ranges
of epochs for calculating the averages. The bold and shaded items indicate learning
successes. The 12th row shows the numbers of learning successes among the 10 runs. The
14th and 15th rows show the averages and standard deviations of the average percentages
over the success runs. The results can be divided clearly into two groups: success and
failure. In the success group, the standard deviations are very small. All the data in
the failure group are far below five times the standard deviations from the averages of



318 A. UENO, M. SAKAMOTO AND T. TAKUBO

the success runs. It is easy to distinguish these two groups because the learning did not
progress all the time in the failure runs. It is not difficult to find a good initial weight
setting because the success rates of learning are high and the variances of performances
in the success group are very small.

Figure 1 shows the learning curves averaged over the success runs. The accuracy rates
are additionally averaged over ten consecutive epochs. The learning curves converge after
approximately 150 epochs. Small performance degradations are observed in the results
of the second, fifth, sixth, and seventh days. Small performance improvement continues
until 500 epochs in the result of the fourth day.

Figure 2 shows the average accuracy rates for werewolf detecting on the second to
eighth days. The values on the “3LNN” line are the same as those in the “Average” row
in Table 2. Line “human” corresponds to the accuracy rates in the voting by the villagers
in the test data set. They are the accuracy rates of real human players. Line “random”
corresponds to the accuracy rates in random voting. The average result of our method
with the 3LNN classifier is overwhelmingly superior to “human” on the second day. It is
superior to “human” on the third day, close to “human” on the fifth and sixth days, and
inferior to “human” on the other days. The average result of our method with the SVM
classifier is superior to “human” on the eighth day, close to “human” on the seventh day,
and inferior to “human” on the other days. Let us now consider a combined method that
uses the 3LNN classifier until the sixth day and the SVM classifier since the seventh day.
Such a method can be superior or close to the average human player other than on the
fourth day.

(a) 2nd-4th days (b) 5th-8th days

Figure 1. Learning curves averaged over success runs

Figure 2. Average accuracy rates for werewolf detecting on the 2nd-8th days
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At the end of this section, we estimate the effectiveness of our method as a support tool.
For simplicity, let us consider the case of following the recommendations of our method
about executions only on the second day. We choose the 3LNN classifier with the best
average performance on the second day. Its average accuracy rate for werewolf detecting
is 47.3% (Setting #3 in Table 2). In the test data set, the total winning percentage of the
villager camp is 51.3%. In the cases where a member of the werewolf camp is designated
for execution on the second day, it is 67.7%. In the other cases, it is 43.6%. Based on
these percentages, we can estimate the winning percentage of the villager camp as follows:
0.677 × 0.473 + 0.436 × (1 − 0.473) ; 55.0%. By comparing it with the actual winning
percentage (51.3%), if you just use this method on the second day, the winning percentage
is expected to rise by 3.7%. The difference in the winning percentage between both the
camps is expected to increase by about 4 times: from 2.6% to 10.0%. We think that this
increase cannot be ignored.

5. Conclusions. In this paper, we have proposed a new method for detecting werewolves
based on players’ conversation in natural language in the Werewolf game. In this method,
each player at a certain point of a game is represented as a vector, called player vector,
based on all his/her messages up to that point. It computes how likely each player is a
werewolf using an SVM or 3LNN classifier based on the player vectors. In the experiments
of werewolf detecting, the average performance of our method with the 3LNN classifier is
overwhelmingly superior to that of human players on the second day. A combined method
can be superior or close to the average human player other than on the fourth day. As
far as we know, no other AI methods can exceed the average human player in detecting
werewolves in actual Werewolf games among human players. In addition, we have shown
its effectiveness as a support tool for human players. We might go on to develop a method
that can estimate a wolfiness score of a player based also on what is mentioned about
him/her in the messages. We think that development of werewolf detecting methods is an
important step towards a complete AI player of the Werewolf game as well as a powerful
support tool for human players.
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