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Abstract. We consider a supply chain network control problem with an independent
replenishment cycle policy of orders. The objective of the problem is to determine the
optimal replenishment quantities and cycles under minimization of the total relevant costs
that consist of ordering costs, inventory holding costs, and fixed costs. For the problem
statement proposed in this paper, we demonstrate that all nodes in a network except
suppliers have non-negative inventory levels during network planning periods. This paper
introduces some useful properties to calculate the non-negative inventories of a product.
Finally, an example has been shown to describe the cost savings of the proposed policy
compared with the existing policy, integer-ratio replenishment policy.
Keywords: Supply chain network, Inventory management, Replenishment cycle

1. Introduction. The facts that optimizing only processes of individual companies may
not be enough to sustain the companies in global competition and that the coordination
between supply chain members can benefit the entire supply chain, are inspiring many
researchers in research area of supply chain management. Therefore, supply chain man-
agement is steadily being carried out to provide more competitive decision making to
the supply chain system in a rapidly changing market environment. Most of research
demonstrated that inventory levels in supply chains can be more efficiently managed by
coordinating entire supply chain network [1,2].

There are two research categories for supply chain problems with inventory manage-
ment: supply chain problems under discrete planning periods (SC D) and supply chain
problems under continuous planning periods (SC C). Most research on SC D was con-
ducted to save its entire costs by taking operational decisions such as lot-sizes together
into traditional supply chain problems known as strategic decision-making problem [3-7].
However, there is a limit to provide a practical operating plan because the main objec-
tive of SC D is to determine more reasonable network configuration under long-term and
discrete planning periods, i.e., annual or monthly periods, rather than to offer detailed
operating plans. Meanwhile, research on SC C mainly discussed practical and detailed
operating plans under continuous planning periods even though most research did not
consider strategic decision-makings. Roundy [8] initially introduced a method for solving
the continuous-time version of supply chain problem under integer-ratio coordination pol-
icy, which is a policy where a node orders to a preceding node at equally spaced points in
time and each succeeding node follows an economic order quantity pattern. The objective
of the research is to determine the optimal order quantity and integer-ratio replenish-
ment cycle under single warehouse and multi retailers. Since then, many researchers have
conducted researches focusing on integer-ratio coordination policy in supply chain. Tsao
and Lu [9] addressed an integrated facility location and inventory allocation problem
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considering transportation cost discounts and proposed a heuristic to obtain the optimal
order quantity and replenishment cycle. Sarkar [10] considered a supply chain problem
with deterioration of volatile products and applied an algebraic approach to finding the
minimum cost related to the problem. Zhao et al. [2] extended a supply chain problem
with multi-stages and devised an optimal integer-ratio coordination policy for inventory
replenishment across the considered supply chain.

To the best of our knowledge, although many researches investigated supply chain
problems with inventory management to determine the optimal lot-sizes or the optimal
order quantities with replenishment cycles, no research has been found considering inde-
pendent replenishment cycles regardless of integer-ratio replenishment cycles under inte-
grated supply chains, i.e., a supply chain network. In other words, since the traditional
policy determines a replenishment cycle among integer-ratio replenishment cycles that
only consist of integer multiples of one replenishment cycle taken by a preceding node,
it cannot guarantee optimal for network problems. Therefore, we propose a novel supply
chain network control problem that considers an independent replenishment cycle under
inventory coordination.

In this paper, we demonstrate that all nodes in a network except suppliers have non-
negative inventory levels for products which belong to a pathway for a single product
type. Note that pathway is a path where raw materials or intermediate products pass
through a series of processes in the chain to be finally the end-product. In addition, we
introduce some useful properties to calculate the non-negative inventory levels.

The paper is organized as follows. Section 2 describes the problem statement of this
problem. In Section 3, some useful properties for the problem are proposed. In Section 4,
an example has been shown to describe the cost savings of the proposed policy. Finally,
the conclusions and future studies are discussed in Section 5.

2. Problem Statement. The configuration of network is given in advance. The network
should consist of three echelons or more, which can be represented as suppliers, plants,
warehouses, distribution centers, and demand markets. Pathways of a single product type
are also given in advance. Hence, all types of intermediate products and raw materials
are known. In the network, a production process at one node makes a raw material or
intermediate product become end-product or another intermediate product. All nodes
except what represent suppliers can replenish inventories toward succeeding nodes. An
edge between two nodes can take at most one replenishment cycle with a static order
quantity. During planning periods of the network, one of nodes except suppliers has
continuous inventory levels. The inventory levels at one node are recorded by incoming
replenishments, outgoing replenishments, and production rates during planning periods.
We assume that all productions commence immediately one day before replenishment
and all production rates are infinite. The objective is to know which edge and how many
replenishment quantities with replenishment cycles should be set.

3. Properties. We begin this section by introducing some useful properties which not
only demonstrate that continuous inventory levels should be non-negatives values but
also propose a general formulation for total inventory levels even if there are a number of
periodic replenishments and schedules on production. The notations involved in following
properties are given as follows:

Notations
ω network planning periods
X total quantity of incoming (or outgoing) replenishment during time periods
Oin

t quantity of incoming replenishment at period t
(
X =

∑ω
t=1 Oin

t

)
Oout

t quantity of outgoing replenishment at period t
(
X =

∑ω
t=1 Oout

t

)
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It inventory level at period t
C in

t cumulated quantity of incoming replenishments at period t
(
C in

t =
∑t

a=1 Oin
a

)
Cout

t cumulated quantity of outgoing replenishments at period t
(
Cout

t =
∑t

a=1 Oout
a

)
p number of incoming orders
q number of outgoing orders

T in
i replenishment cycle of incoming order i

T out
j replenishment cycle of outgoing order j

N in
i frequency of incoming order i

(
T in

i · N in
i = ω

)
Nout

j frequency of outgoing replenishment j
(
T out

j · Nout
j = ω

)
X in

i total quantity of incoming order i during time periods
(
X =

∑p
i=1 X in

i

)
Xout

j total quantity of outgoing order j during time periods
(
X =

∑q
j=1 Xout

j

)
In the following three properties, we discuss features of inventory of a single product

belonging to a corresponding pathway by not accounting for any production as a prelim-
inary.

Property 3.1. The total inventory level recorded during the planning period is equal to
the difference between the sum of the cumulated quantity of incoming replenishments and
cumulated quantity of outgoing replenishments during the planning period.

Proof: Let in general, inventory level at period t be It =
∑t

a=1

(
Oin

a − Oout
a

)
. Since

cumulated quantity of incoming replenishments and cumulated quantity of outgoing re-
plenishments during the planning period are C in

t =
∑t

a=1 Oin
a and Cout

t =
∑t

a=1 Oout
a ,

respectively, we have It = C in
t − Cout

t , i.e.,
∑ω

t=1 It =
∑ω

t=1

(
C in

t − Cout
t

)
. Hence, the

proposition is established. �
Property 3.2. The inventory levels of a particular node are always non-negative if the
following three conditions are met:

a) There are the number of incoming orders p and the number of outgoing orders q, and
each incoming (or outgoing) order has its own replenishment cycle.

b) Initial incoming replenishment of incoming order i is completed at t = 1 regardless of
the replenishment cycle, and the initial outgoing replenishment of outgoing order j is
completed at t = T out

i (T out
i ̸= 0).

c) The total quantity of incoming replenishments is equal to the total quantity of outgoing

replenishments, i.e.,
(∑p

i=1 X in
i =

∑q
j=1 Xout

j

)
.

Proof: Let functions f , g, and h for period t and incoming order i (or outgoing order

j) be as f(t) = It, g(i, t) =
Xin

i

N in
i

⌊
1 + t−1

T in
i

⌋
, and h(j, t) =

Xout
j

Nout
j

⌊
t

T out
j

⌋
.

Then, by refining the right side we have f(t) =
∑p

i=1 g(i, t) −
∑q

j=1 h(j, t).

Furthermore, we have f(t) =
∑p

i=1
Xin

i

N in
i

⌊
1 + t−1

T in
i

⌋
−
∑q

j=1

Xout
j

Nout
j

⌊
t

T out
j

⌋
.

Then, by refining the right side of above equation we have

p∑
i=1

[
X in

i

N in
i

−
X in

i

{
(t − 1) mod T in

i

}
ω

+
X in

i (t − 1)
ω

]
−

q∑
j=1

−Xout
j

{
t mod T out

j

}
ω

+
Xout

j · t
ω


=

(
p∑

i=1

X in
i

N in
i

− X

ω

)
−

p∑
i=1

[
X in

i

{
(t − 1) mod T in

i

}
ω

]
+

q∑
j=1

Xout
j

{
t mod T out

j

}
ω

 .
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Since 0 ≤
∑p

i=1

[
Xin

i {(t−1) mod T in
i }

ω

]
≤
∑p

i=1

[
Xin

i (T in
i −1)

ω

]
and 0 ≤

∑q
j=1

[
Xout

j {t mod T out
j }

ω

]
≤
∑q

j=1

[
Xout

j (T out
j −1)

ω

]
, we have f(t) ≥

(∑p
i=1

Xin
i

N in
i
− X

ω

)
−
∑p

i=1

[
Xin

i (T in
i −1)

ω

]
.

Then, by refining the right side of above equation we have(
p∑

i=1

X in
i

N in
i

− X

ω

)
−

p∑
i=1

[
X in

i

(
T in

i − 1
)

ω
· N in

i

N in
i

]
=

(
p∑

i=1

X in
i

N in
i

− X

ω

)
−

(
p∑

i=1

X in
i

N in
i

− X

ω

)
= 0.

Hence, the proposition is established. �
Property 3.3. The total inventory level of a particular node during planning period is

equal to
∑p

i=1 X in
i

(T in
i +ω)
2

−
∑q

j=1 Xout
j

(
ω−T out

j

2
+ 1
)

if the above three conditions are met.

Proof: Let functions f , g, and h for period t and incoming order i (or outgoing order

j) be as f(t) = It, g(i, t) =
Xin

i

N in
i

⌊
1 + t−1

T in
i

⌋
, and h(j, t) =

Xout
j

Nout
j

⌊
t

T out
j

⌋
.

Since the array list of the cumulated quantities of incoming replenishments is identical
to an arithmetical progression where there are T in

i of the identical terms, the sum of the
cumulated quantity of incoming replenishments associated with incoming order i at period

t is equal to
∑ω

t=1 g(i, t) = T in
i ·

N in
i

(
Xin

i
N in

i

+Xin
i

)
2

= X in
i · (T in

i +ω)
2

.
Similarly, the array list of the cumulated quantities of outgoing replenishments is iden-

tical to an arithmetical progression where the term 0 and X in
i /N in

i are excluded and there
are T out

i of the identical terms.
However, since the number of term X in

i /N in
i is unconditionally 1, the sum of the cumu-

lated quantity of outgoing replenishments associated with outgoing order i at period t is

equal to
∑ω

t=1 h(j, t) = T out
j ·

(Nout
j −1)

{
Xout

j

Nout
j

+

(
Xout

j −
Xout

j

Nout
j

)}
2

+ Xout
j = Xout

j

(
ω−T out

j

2
+ 1
)
.

Since
∑ω

t=1 I(t) =
∑ω

t=1

{∑p
i=1 g(i, t) −

∑q
j=1 h(j, t)

}
, we have f

∑p
i=1 X in

i
(T in

i +ω)
2

−∑q
j=1 Xout

j

(
ω−T out

j

2
+ 1
)
.

Hence, the property is established. �
The above properties indicate that when any production rates are not considered, i.e.,

only incoming and outgoing replenishments for the single product are assumed, the in-
ventory is always non-negative and simply calculated for all planning periods. We note
that inventory levels are still discrete because replenishments only provide inventory in-
formation at the end of the period.

The following property discusses continuous inventory levels of intermediate products
(or the end-product) when a series of production rates as well as incoming and outgoing
replenishments of products is considered.

Property 3.4. If a particular node handles a specific product under the above three con-
ditions with the rules that all production begins one day before replenishment and the
infinite production rates are allowed, the total inventory level of intermediate products (or

the end-product) is defined by
∑p

i=1 X in
i

(T in
i +ω)
2

−
∑q

j=1 Xout
j

(
ω−T out

j +3

2

)
.

Proof: Since all production begins one day before replenishment, the sum of quantity
of the product in process during a specific time interval is equal to the sum of quantity
of outgoing replenishments during a specific time interval.

Hence, the total additional inventory levels across the entire planning period, which
are caused by the quantities of the product in process, are equal to the total outgoing

replenishments,
∑q

j=1

Xout
j

2
.
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As a result, the property is established by simply adding the total outgoing replenish-
ments to the total inventory levels during planning period. �

Finally, the relevant costs to the proposed policy, which is considering independent
replenishment cycles rather than integer-ratio, can be expressed as follows:

p∑
i=1

σiN
in
i +

q∑
j=1

σjN
out
j + δ

{
p∑

i=1

X in
i

(
T in

i + ω
)

2
−

q∑
j=1

Xout
j

(
ω − T out

j + 3

2

)}
+ θ (1)

where σi and σj are ordering costs per each replenishment, δ is inventory handling cost
per unit, and θ is fixed cost of the corresponding node.

In the next section, an example of supply chain network control problem and the
resulting cost savings are described through comparison with the existing replenishment
policy, which allows only integer-ratio replenishment cycles.

4. Example. In this section, we show a calculation experiment to compare the policy
proposed in this study with the existing one allowing only integer-ratio replenishment
cycles. For comparison in terms of cost, we define total network costs for a supply chain
network control problem as the sum of total ordering costs, total handling costs, and
total transportation costs. Note that single ordering cost and single handling cost for an
edge are defined in Equation (1). Single transportation cost for an edge can be calculated
by multiplying a double distance between two nodes, transportation cost parameter, and
total quantity of replenishments, and then dividing them into a transportation capacity
parameter. We consider an instance involving two suppliers, two retailers, and five cus-
tomers with the input data shown in Table 1 and Table 2. We assume that the network
planning period is set to 360 (days) and then each replenishment cycle should be set to a
divisor of the network planning period such as 1, 2, 3, 4, 5, 6, 8, 9, 12, . . . , 180, and 360.
For the same instance, we found the optimal solutions using the proposed model under

Table 1. Parameters corresponding to one supplier, one retailer, five cus-
tomers, and one transportation mode

Node a) S1 S2 R1 R2 C1 C2 C3 C4 C5
Daily demand (units per day) – – – – 5 3 6 7 2

Ordering cost ($ per replenishment) 35 30 80 75 – – – – –
Handling cost ($ per unit) – – 1 1 1 1 1 1 1

Transportation capacity (units per vehicle) 1,500
Transportation cost ($/km/vehicle) 35

a) S1 and S2 are two suppliers, R1 and R2 are two retailers and C1-C5 are five
customers.

Table 2. Problem instance corresponding to one supplier, one retailer,
and five customers

Node S1 S2 R1 R2 C1 C2 C3 C4 C5
S1 – 28.48 31.13 10.41 10.62 33.43 29.43 19.84 31.65
S2 28.48 – 8.19 25.02 20.66 27.79 6.51 35.72 10.82
R1 31.13 8.19 – 24.94 25.57 20.94 14.61 33.45 2.72
R2 10.41 25.02 24.94 – 15.50 23.16 28.22 12.52 24.68
C1 10.62 20.66 25.57 15.50 – 34.60 19.98 27.71 26.92
C2 33.43 27.79 20.94 23.16 34.60 – 34.11 22.58 18.44
C3 29.43 6.51 14.61 28.22 19.98 34.11 – 39.86 17.28
C4 19.84 35.72 33.45 12.52 27.71 22.58 39.86 – 32.31
C5 31.65 10.82 2.72 24.68 26.92 18.44 17.28 32.31 –



358 Y.-B. WOO AND B. S. KIM

Table 3. The optimal solutions and objectives corresponding to the pro-
posed policy and the existing policy

Replenishment policy Independent Integer-ratio
replenishment cycles replenishment cycles

Node R1 R2 C1 C2 C3 C4 C5 R1 R2 C1 C2 C3 C4 C5
Assignment S1 R2 R2 R2 R2 R2 S2 S1 R2 R2 R1 R2 R1

Replenishment quantity – 46 20 15 24 21 12 30 16 20 18 24 28 12
Replenishment cycle – 2 4 5 4 3 6 2 2 4 6 4 4 6

Total ordering costs ($) 38,700 41,700
Total handling costs ($) 28,980 32,580

Total transportation costs ($) 11,638 9,300
Total network costs ($) 79,318 83,510

two replenishment cycle policies. First policy allows independent replenishment cycles
and second policy allows only integer-ratio replenishment cycles. Note that the second
policy refers to [8,11]. Table 3 describes the optimal solutions and the objectives. The
results explain that the proposed policy in this paper offers more effective decisions in
terms of minimizing the relevant costs compared with the existing policy, which allows
only integer-ratio replenishment cycles.

5. Conclusions. In this paper, we considered a supply chain network control problem
with independent replenishment cycles under inventory coordination. The objective of the
problem is to determine the optimal order quantities and replenishment cycles regardless
of integer-ratio replenishment cycles under minimization of the total network costs. We
demonstrated that all nodes in a network except suppliers have non-negative inventories
and introduced some useful properties to calculate the non-negative inventories. We
showed that allowing independent replenishment cycles results in the reduction of total
relevant costs as compared to considering only the integer-ratio replenishment cycles.
We can expect that the proposed novel policy on independent replenishment cycles will
provide more effective solution in supply chain network control problems.

In the future, we will develop a network problem considering multi-pathways of multi-
products so that we can cover realistic supply chain network problems such as supply
chain for chemicals or energy.
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