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Abstract. Mobile wireless sensor networks can perform state observation in wide area
with a small number of nodes. Therefore, it is expected to collect data efficiently and
flexibly in areas where it is difficult to add sensors and intrusion of human. Although
the previous study has proposed the method using virtual rails, it cannot deal with the
changes of state of observation area. In this study, we propose a new method based
on Discrete binary Particle Swam Optimization (DPSO) to optimize the placement of
virtual rails in mobile sensor networks. In the proposed method, both the number of
virtual rails and placement can be determined according to the state of the observation
area. In simulation experiments, the performance of the proposed method is investigated
to verify its effectiveness.
Keywords: Mobile wireless sensor networks, Amount of average residual power, DPSO,
Virtual rail

1. Introduction. In recent years, there has been an increasing interest in Mobile Wire-
less Sensor Networks (MWSNs) with a moving function in sensor nodes [1,2]. MWSNs,
which consist of Mobile Sensor Nodes (MSNs), have a wide range of applications, such
as state observation of the disaster area and survey of the lunar surface. The problems
of MWSNs include that constructing the topology occurs frequently and that the bat-
tery is finite. Hence, various methods using virtual rails have been proposed [3-5]. Also,
dynamic data collection method [4] allows to collect data with less power consumption
without knowing the positions of each other by relaying communication along the de-
ployed virtual rails. However, there is a problem that the power consumption increases
according to the number of virtual rails. This paper proposes a rail optimal placement
method using Discrete binary Particle Swarm Optimization (DPSO) [6]. In the proposed
method, both the number of virtual rails and placement can be determined according
to the state of the observation area. In addition, we propose an objective function for
evaluating virtual rails combination determined by DPSO. In simulation experiment, the
performance of the proposed method is investigated to verify its effectiveness. The rest of
the paper is organized as follows. Section 2 outlines dynamic data collection method. In
Section 3, we describe the proposed virtual rails optimum placement method using DPSO
and an objective function for evaluating virtual rails combination determined by DPSO.
In Section 4, conditions of simulation and parameter setting are introduced. In Section 5,
the experimental results are reported in detail. Finally, this paper closes with conclusions
and ideas for further study in Section 6.

2. Dynamic Data Collection Method. The previous method consists of three phases
of sensing phase, data transfer phase, and return phase.
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2.1. Sensing phase. In the sensing phase, each sensor node performs sensing at a pre-
determined observation point.

2.2. Data transfer phase. In the data transfer phase, each sensor node sets the nearest
virtual rail on its own virtual rail. After each sensor node gathers on the virtual rails,
the transmission node moves to the point where it can communicate with the next sensor
node. After that, the transmission of data to the next sensor node is started. Dynamic
method is shown in Figure 1. In the case that the next sensor node is not within the
communicable distance, the sensor node that received the data moves to the distance able
to communicate with the next sensor node. After communication becomes possible to the
next sensor node, the sensor node selects the data communication method and performs
data communication. The drawing on the upper right side part of Figure 1 is the static
communication method. This method is a method of transmitting data wirelessly from
the place without moving. The drawing on the lower right side of Figure 1 is the dynamic
communication method. This method moves from the received position information to the
position of the next sensor node. After that, transmission is performed. In the previous
method, out of two methods, one that reduces power consumption is selected and data is
communicated.

Figure 1. Dynamic method

2.3. Return phase. In the return phase, each sensor node moves to the original obser-
vation point. When all the sensor nodes return to the predetermined observation point, it
is defined as the end of the cycle. After that, all sensor nodes shift to the sensing phase.

2.4. Problems of previous method. In the dynamic data collection method, each
sensor node is randomly deployed in the observation area. Hence, optimal placement
of deployed virtual rails is different depending on condition observation area. It seems
necessary to re-experiment changing the number of deployed virtual rails. Observation
area by previous method is shown in Figure 2. Figure 3 shows the amount of average
residual power after 20 cycles obtained by 3 patterns using the previous method. In
the previous method, the virtual rails are deployed at equal intervals, and in a sparse
network, the power consumption of the sensor node increases. Therefore, the usage rate
for each virtual rail is biased by the number of nodes and observation area. Moreover, it
is considered that it cannot deal with the environment where the number of nodes and
the node density change. Hence, this paper proposes a rail optimal placement method
using DPSO. In the proposed method, both the number of virtual rails and placement
can be determined according to the state of the observation area.
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Figure 2. Observation area by previous method

Figure 3. The amount of average residual power by previous method

3. Proposed Method. This paper proposes virtual rails optimum placement method
using DPSO. In addition, we propose an objective function for evaluating virtual rails
combination determined by DPSO. In the proposed method, it is possible to deploy op-
timal virtual rails according to the changes in the number of nodes and the condition
of the observation area, and to reduce the power consumption of each node. DPSO is
positively used as a promising combination optimization method because it is superior to
the other methods on solving many difficult combination optimization problems. In the
proposed method, candidate rails are set in the observation area where each sensor node
is randomly deployed. DPSO is applied to the combination optimization problem which
determines whether to place virtual rails on the candidate rails. In DPSO, each particle
constituting a swarm searches for a solution until a predetermined iteration is reached us-
ing the personal best solution
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and the global best solution shared in the swarm

found during the search process
(
gbest k

)
. Each particle produces a new velocity vector(

vk+1
id

)
by linearly coupling the previous velocity vector

(
vk

id

)
, pbest k

id, and gbest k before

moving to the next position
(
xk+1

id

)
. Assume an n-dimensional search space, and a swarm

consisting of N particles. Superscript k indicates the number of iterations, subscript d
(d = 1, . . ., n) represents the index of the variable, and subscript i (i = 1, . . . , N) rep-
resents the index of the particle. At the k + 1 iteration, the velocity vector
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position vector
(
xk+1
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)
of the i-th particle are updated by the following equations
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where r1 and r2 are random numbers, uniformly distributed within the interval [0, 1]. ω is
a parameter called the inertial weight. c1 and c2 are positive constants, which are referred
to as the cognitive and social parameters, respectively.

Each element (variable) of the position vector of each particle is transformed from the
variable of continuous type of the binary state variable, i.e., 0 or 1, according to the
following rule
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where sig(·) is the sigmoid function. ρ is a random number, uniformly distributed within
the interval [0, 1]. The value of position vector

(
xk+1

id

)
is determined by comparing the

results of the sigmoid function with ρ. In the proposed method, candidate rails are set
in the observation area where each sensor node is randomly deployed, and it is decided
whether or not to place the rail in this candidate rail. DPSO is applied to the combination
optimization problem which determines whether to place virtual rails on the candidate
rails. The objective function for evaluating the virtual rails combination determined by
DPSO is the following Equation (5). The equation of the threshold value K is shown in
(6).

F =
C−mn

n − dn
(5)

K =
D

Rail num
(6)

where n is the number of sensor nodes, dn is the number of nodes whose travel distance
to the virtual rails is shorter than the threshold value K, mn is the number of nodes
where the distance to the next node on the virtual rail is further than communication
distance. Rail num is the number of virtual rails, D is fixed value. The threshold value
K is calculated by dividing the fixed value D by deployed Rail num. Also, in the case
when the number of virtual rails is large, the value of the threshold value K becomes
small. Using objective function, it is possible to obtain a combination of a better virtual
rails deployment.

4. Conditions of Simulation and Parameter Setting. Through the simulation ex-
periments, we evaluated the effectiveness of the proposed method compared with previous
method. Table 1 shows the conditions of simulation. Table 2 shows parameter settings
on algorithms. Sensor nodes are randomly placed in the observation area of 400 × 400
[m], and a sink node is placed on the upper left corner of the observation area. The total
electric energy of each node was set to 10,000 [J], the fixed value D was set to 100 [m].
The observation points randomly deployed within the observation area and there are no
obstacles. The amount of power consumption depends on the communication distance,
the amount of data, and the moving distance. The power consumption model was evalu-
ated using Reference [7]. Each experiment was conducted for 20 cycles in these simulation
environments. Also, the amount of average residual power of all nodes was measured and
evaluated.
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Table 1. Conditions of simulation

Observation environment 400 × 400 [m]
Number of sink nodes 1
Number of sensor nodes 50-250
Sensing data 50 [Mbit]
The amount of power consumption 1 [J/M]
Communication distance 50 [m]
Total power consumption 10,000 [J]

Table 2. Parameter settings on algorithm

particle size 100
ω 0.8

c1, c2 2.0

Figure 4. The amount of average residual power

Table 3. The amount of average residual power

Number of nodes
Number of virtual rails

4 9 14 DPSO
50 7629.8 7344.8 6657.6 7972.3
100 7411.5 8221.0 7952.1 8311.7
150 6933.8 8153.1 8219.7 8264.3
200 6705.1 8098.6 8378.7 8392.2
250 6275.6 7891.2 8313.9 8421.9

5. Experimental Result. Figure 4 and Table 3 show the results of the amount of av-
erage residual power of the previous method and the proposed method. The previous
method sets the number of virtual rails of three patterns, where R represents the number
of the deployed virtual rails by previous method. Also, Figure 5 shows observation area
by the proposed method. In the previous method, it allowed to confirm that there is a
difference in the amount of average residual power according to the state of observation
area. On the other hand, in DPSO, the amount of average residual power keeps a high
value even when the state of observation area is changed. In the previous method, when
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Figure 5. Observation area by proposed method

the number of nodes is small and the number of virtual rails is large, the power con-
sumption increases since each node largely moves on the virtual rails. On the other hand,
in case when the number of virtual rails is small and the number of nodes is large, the
power consumption increases since each node largely moves in order to reach the virtual
rail. Also, because the amount of data transmitted by each node on the virtual rail in-
creases, the power consumption increases. In the proposed method, the optimum number
of virtual rails and position are able to be calculated according to the number of nodes
by DPSO. The proposed method has superiority compared with the previous method in
the experiments.

6. Conclusions. In this paper, we have proposed a new method based on DPSO to
optimize the placement of virtual rails in MSNs. In addition, we proposed an objective
function for evaluating virtual rails combination determined by DPSO and have verified its
effectiveness. Through the simulation experiments, we have confirmed that the proposed
method can deploy optimal virtual rails according to the changes in the number of nodes
and the condition of the observation area. Future work includes a detailed evaluation of
the proposed method and mobile sensor applications.
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