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Abstract. After production disruptions, market demand becomes highly unpredictable,
and changes to countermeasures enterprises adopt. This study aims to develop an op-
timal compensation strategy based on dynamic demand forecasting. To achieve this, we
design a differential model to predict dynamic demand after disruption. On the basis
of the prediction, we model the impact caused by random disruptions, and explore an
optimal compensation mitigation strategy. The insights into the important roles of dis-
ruption length and uncertainty, and the factors impacting on customers’ behavior are
also numerically generated. The analysis reveals that disruption uncertainty affects the
optimal compensation level for short and long disruptions with different ways, and the
compensation strategy fails to cope with sufficiently long disruptions. As for the factors
related to customers’ behavior, the optimal compensation level shows significant change
to competition intensity, mostly decrease to customers’ brand loyalty, and keep steady to
high customers’ sensitivities.
Keywords: Compensation strategy, Demand learning, Demand forecasting, Customer
behavior, Production disruption

1. Introduction. A minor incident in supply chain systems can cause disruptions of
major economic consequence [1]. In recent years, with trends such as global purchases,
noncore business outsourcing, and single source supply, the probability of supply chain
disruption increases [2]. Many approaches have been proposed by academics and practi-
tioners to hedge against them [3]. One of the most common utilized mitigation strategies
is compensation strategy. Various forms of compensation strategies are widely used in
traditional and online retailing to control customers’ reactions to disruptions [4,5].

While examining mitigation strategies, both deterministic and nondeterministic de-
mands are studied [6], and a few recent researches start to concern forecasting demand.
Many methods have been proposed to predict uncertain demands, such as, fuzzy tools,
regression models, moving average (MA), weighted moving average (WMA), exponential
smoothing (ES) [7], grey prediction method (GPM) [8], and machine learning algorithm
[9]. In the extant literature, few studies reached to the prediction of dynamic market de-
mand during mitigation strategies design. [10] used regression models to forecast demand
when they plan safety stocks to cope with disruptions. [11] developed a fuzzy inference
system (FIS) tool to predict the changes in future demand, and proposed a predictive
mitigation planning approach for managing predictive demand changes.

To the best of our knowledge, no study has incorporated customers’ changing behaviours
into demand prediction while mitigates disruptions. Only a few studies have considered
customer behaviours (response to disruptions) into demand dynamics [12,13]. However,
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during these studies, neither the change nor the prediction of customers’ behaviors has
been studied. As pointed out by [14], customer’s behavior at disruption hitting could
change under some circumstances. In reality, customers’ responses to disruptions could be
fast-changing to countermeasures the enterprise adopts. The forecasting method which
uses few parameters to describe the demand distribution cannot possibly capture such
changes [9].

Therefore, in this study, to capture customers’ changing behaviours, we establish a dif-
ferential model for demand learning to forecast the market demand after disruption. In
the model, three factors related to customer behavior are taken into account. As revealed
by [15], customer reactions are mainly impacted by loyalty and the presence of product
alternatives. Hence, we consider competition intensity among alternative products, cus-
tomers’ sensitivities to disruption duration, and customers’ brand loyalty. On the basis
of the prediction, an optimal compensation strategy is established by minimizing the im-
pact caused by the random disruption. Through numerical analysis, we further investigate
how to change different compensation levels to the factors referring to disruption itself
and customer behaviors.

We contribute to the literature of supply disruption management as follows. This study
develops a new method to predict the market demand after disruption taking customers’
changing behavior on countermeasures into consideration. It confirms demand dynamics
cannot be specifically described by a demand function as given in most of the extant re-
search work. Our results show there may be two scenarios, depending on the complicated
relationship between the factors impacting on customers’ behavior. An optimal compen-
sation strategy is proposed to mitigate random disruptions. Several important managerial
insights are offered to cope with disruptions with different length and uncertainty, facing
different competition intensity, customers’ sensitivity, and brand loyalty.

The paper is organized as follows. In Section 2, we establish a differential model
including demand learning to forecast the market demand after disruption. In Section
3, the impact caused by disruptions is measured and an optimal compensation strategy
is proposed. Numerical analysis and managerial implications are presented in Section 4.
Finally, Section 5 concludes this paper.

2. Forecasting Market Demand after Disruption. In this section, based on the ob-
servation of the competition intensity among alternative products, customers’ sensitivities
to disruption duration, and customers’ brand loyalty, a differential model is formulated
to forecast how the market demand will change after disruption.

After a disruption happens, some customers choose to leave while others stay waiting
if no countermeasure is implemented. In this study, we suppose that k0 of the cus-
tomers leave immediately for alternative products. In other words, there are 1 − k0 of
the customers left in the market, backordering their purchase. Comprehensibly, we let
1 − k0 reflect the mean brand loyalty of customers to the product. Higher loyalty results
in more customers staying. Observing the customers’ reactions, in order to keep more
of them waiting for the delayed product, the manufacturer offers c(a) compensation to
make the customers sense a level of utility (we call it compensation level a in the paper).
Therefore, at the initial time when the compensation is offered, y0 of the customers ac-
cept the compensation and place backorder, i.e., y0 = k0 + (1 − k0)a. In other words,
the maximum compensation level “one” will stimulate all the customers to wait. How-
ever, the utility of the same amount of compensation is decreasing in the waiting time,
θ(t) = a − bt, 0 ≤ θ(t) ≤ 1, where, b is the sensitivity of customers to the disruption
duration t (0 ≤ b ≤ 1). Clearly, the customers sense zero utility from the compensa-
tion when the disruption lasts longer than tθ = a/b. On the other hand, because of the
competition, the customers who choose to leave for alternative products gain utility λ.
Clearly, λ reflects the competition intensity among the substitutable products. Letting
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y(t) denote the rate of customers who place backorder at t time, we have the following
differential model, similar to [16].{

dy(t)/dt = y(t)(ul − ū);

y(t)|t=0 = y0,
(1)

where ul is the customers’ utility of the decision “to back order the purchase for the
compensation”, i.e., θ(t). ū is the mean utility of the customers, which is y(t)θ(t) + (1 −
y(t))λ. Substituting ul and ū into the above differential equation, and solving the model,
we have:

y(t) =

{
y1(t) = 1 − 1/

[
1 + ce(a−λ− 1

2
bt)t

]
, 0 ≤ t < a/b;

y2(t) = 1 − 1/
[
1 + ce−λt

]
, t ≥ a/b,

(2)

where c = y0/(1 − y0). According to Equation (2), y(t) is decreasing to t when t ≥ a/b.
As for 0 ≤ t < a/b, y(t) shows that: if a ≤ λ, y(t) is decreasing; if a > λ, y(t) is increasing
when t < t1 = (a − λ)/b, and decreasing when t < t1. The manufacturer loses the whole
market when no customer chooses to backorder, that is, the time when y(t) = 0, denoted
by t2. Based on y(t), we see: t2 could be achieved before and after a/b. To specifically
determine t2 and explore how the market demand changes after disruption, we discuss
the dynamic processes of market demand from the following two scenarios.

Scenario 1. t2 > a/b.
In this scenario, the market demand will be completely lost after a/b. In other words,

there are still some customers remaining in the market at a/b time. That is, y(a/b) > ε,
where ε ≈ 0 is the calculation error here. According to y2(t) in Equation (2), we see all the
market demand is lost when ce−λt = ε. Therefore, t2 is determined in this scenario, which
is, t2 = t2a = (1/λ) ln(c/ε). The whole process of market demand after disruption can be
illustrated by Figure 1 (D is the market share of the manufacturer before disruption).

Figure 1. The demand process with compensation in Scenario 1 if a < λ
(Figure a) and a > λ (Figure b)

Scenario 2. t2 ≤ a/b. In this scenario, the market demand will be completely lost
before a/b. According to Equation (2), we know the market demand will be completely lost

when y1(t) = ε. Solving the equation, we have t =
[
a − λ ±

√
(a − λ)2 − 2b ln(ε/c)

]
/b.

However,
[
a − λ −

√
(a − λ)2 − 2b ln(ε/c)

]
/b is negative when a < λ, and is smaller

than t1 = (a − λ)/b when a > λ. Hence, we can conclude that t2 cannot be achieved

at
[
a − λ −

√
(a − λ)2 − 2b ln(ε/c)

]
/b. That is, all the customers will be lost at t2 =

t2b =
[
a − λ +

√
(a − λ)2 − 2b ln(ε/c)

]
/b if t2 ≤ a/b. The whole process can be similarly

gained, as Figure 2.
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Figure 2. The demand process with compensation in Scenario 2 if a < λ
(Figure a) and a > λ (Figure b)

3. The Impact within Compensation Strategy. In this section, we explore the im-
pact caused by random disruptions on the basis of the demand prediction, and develop
an optimal compensation strategy to minimize the disruption impact. To do so, the dis-
ruption duration is supposed to be a stochastic variable, denoted by Td, and the density
function is f(x). The impacted caused by the random disruption can be described in the
following two scenarios. Here, t2 is the time when all the customers are lost. That is,
t2 = t2a in Scenario 1, and t2 = t2b in Scenario 2.

3.1. Td > t2. The demand process with compensation is stated as foregoing. The market
demand is completely lost even with compensation adopted if the disruption will last
longer than t2. Hence, the compensation strategy is not very effective for mitigating
the disruptions which are longer than t2. If the manufacturer adopts the compensation
strategy, the demand process is as Figure 3 (left).

Figure 3. The demand process during the whole impacted period

In Figure 3, D is the market share of the manufacturer before disruption, and Tn is
the time required to renew the lost market share, Tn = tnD. The period impacted by the
disruption is (0, Td + Tn). Specifically, the period for compensation is (0, t2), the period
for renewing the lost market demand is (Td, Td + Tn), and the period for production
is (Td, Td + Tn). Hence, during the impacted period, the total compensation cost is

c(a)
∫ t2
0

Dy(t)dt; the recovery cost (for renewing the lost market) is cnD; the production
cost is 0.5cpDTn; the lost-sales cost is cl[DTd + 0.5DTn], where c(a) = cma, cm is the
unit cost for compensation level a. The recovery time (for renewing the lost market) is
Tn = tnD. The total cost without disruption during the period is cpD(Td+Tn). Therefore,
the impact caused by the disruption is the additional cost:

C1 = c(a)

∫ t2

0

Dy(t)dt + cnD + cp
1

2
DTn + cl

[
DTd +

1

2
DTn

]
− cpD(Td + Tn). (3)

3.2. Td ≤ t2. For those disruptions which are shorter than t2, we can consider the com-
pensation for mitigation, and then recover the lost market after the disruption restored.
The process of the demand changing is as Figure 3 (right). The period impacted by the
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disruption is (Td, Td + Tr). The period for compensation is (0, Td), the period for market
recovery is (Td, Td + Tr), and the period for production is (Td, Td + Tr). Therefore, the
impact caused by the disruption is the additional cost:

C2 = c(a)

[∫ Td

0

Dy(t)dt

]
+ crD(1 − y(Td)) + cp

[
1

2
(Dy(Td) + D)Tr

]
+ cl

[
DTd +

1

2
(D − Dy(Td))Tr

]
− cpD(Td + Tr).

(4)

Synthesizing the above statements, the expectation of the impact caused by the disruption
is

E(C) =

∫ +∞

t2

f(x)C1dx +

∫ t2

0

f(x)C2dx, (5)

where t2 = t2a if a/b < t2a, and t2 = t2b if a/b >= t2a. Minimizing E(C), the optimal com-
pensation level a∗ to customers can be achieved, and an optimal compensation strategy
is directly proposed.

4. Numerical Analysis. To examine the effects of the factors related to customers’
behaviors and disruptions on the optimal compensation strategy, we conduct numerical
analysis in this section. Suppose disruption duration Td obeys a normal distribution
N(µ, σ) and fix the relative parameters as an instance: µ = 10, σ = 0.3, cl = 10, cn = 20,
cm = 4, cp = 5, cr = 12, tr = 1, tn = 2, λ = 0.5, b = 0.3, D = 0.5, k0 = 0.2, e = 0.001.
Minimizing E(C) through algorithms, the optimal compensation level a∗ to customers can
be determined. Varying the relative factors (µ, σ, λ, b, k0) while keeping other parameters
the same, the variation trends of a∗ to the factors are achieved as given in Figure 4 (we also
testify there is similar pattern of the trends for most instances). Based on the numerical
analysis, we further generate insights into the important role of disruption length and
uncertainty, competition intensity (λ), customers’ sensitivity (b), and customers’ brand
loyalty (k0).

As can be seen in Figure 4 (top), it requires no compensation (a∗ = 0) facing sufficiently
longer disruptions, as compensation strategy is not effective to mitigate long disruptions.
About the disruption uncertainty σ, we observe that the disruption with the same length
and high σ requires high a∗ until the highest (a∗ = 1); for the short disruptions (µ ≤
13), a∗ stays the highest level once σ is sufficiently high; for the long disruptions, the
compensation strategy fails to cope with those disruptions with high σ.

In Figure 4 (bottom), the x-axis respectively represents the parameters λ, b, k0. Clearly,
a∗ stay the same for different b when b >= 0.5. On the contrary, low sensitivities dra-
matically influence a∗. The trend to the competition intensity λ reflects an interesting
fact: enterprises should not compensate to customers if λ is very high or very low; and
a∗ should change to λ when λ is mediate. In reality, market demand vanishes fast if λ is
extremely high that compensation strategy is not effective to mitigate the disruption. If
λ is low, the market demand drops slowly, and the compensation is not necessary. a∗ is
decreasing in k0, except when k0 is sufficiently large (> 0.8). In other words, it will cost
the enterprises less if customers are with higher brand loyalty. However, abnormally large
k0 corresponds to another fact in reality: the minority customers who choose to leave are
extremely hard to be kept by compensation, and their reactions strongly affect others’
intended behaviors as the disruption continues. Hence, high k0 interestingly requires high
a∗ in some cases.

5. Conclusions. In this paper, we consider a manufacturer confronting a random pro-
duction disruption, and there are substitutable products in the market. An optimal
compensation strategy based on forecasting dynamic demand as a random disruption
mitigation measure is explored.
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Figure 4. The variation trend of a∗ to µ, σ, and to λ, b, k0

To precisely predict how the market demand will change dynamically after disrup-
tion occurs and the manufacture implements mitigation strategy, we develop a differen-
tial model considering demand learning between customers. The model also captures
three major factors impacting on customer reactions to the disruption: competition in-
tensity among alternative products, customers’ sensitivities to disruption duration, and
customers’ brand loyalty. Our analysis presents the dynamic processes of market de-
mand after disruption considering all the potential scenarios of relative factors. Based on
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the prediction, we model the impact caused by the random disruption during the whole
disruption impacted period, which covers both the periods of disruption duration and
disruption recovering. An optimal compensation strategy is established by minimizing
the impact.

We numerically analyze how the optimal compensation strategy should be changed to
the relative factors, and show that in deciding compensation level, both the factors of
disruption itself (disruption length and uncertainty) and the factors of customer behavior
play important roles. Several important managerial insights are established: disruption
uncertainty affects the optimal compensation level with different ways for short and long
disruptions, and the compensation strategy fails to cope with sufficiently long disruptions.
On the other hand, the optimal compensation level shows significantly change to compe-
tition intensity, mostly decrease to customers’ brand loyalty, and barely keep the same
for high customers’ sensitivities.
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