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Abstract. As modern supply chain network becomes complex globally dispersed system,
vulnerability also increases. Large scale supply chain disruption is rare but the shock-
wave created by a disruption creates unforeseen damage in entire supply chain. Because
of recent supply chain disruption, many academic researches emerge seeking mitigation
strategies. In this paper, we develop a discrete event simulation model for a three-echelon
supply chain that assesses the performance of the dual sourcing with respect to various
disruption probability, backup options, and recover strategies.
Keywords: Supply chain disruption, Discrete event simulation, Disruption mitigation,
Arena

1. Introduction. As the modern supply chain evolves into less vertically integrated glob-
ally dispersed network, the complexity and vulnerability inside supply chain increase
rapidly. A firm procuring raw materials and parts from multiple oversea suppliers, any
disruption in one of suppliers halts production and supply shortages occur. In distribution
network, centralized warehouse utilizes economies of scale and risk pooling effects but any
failure in a centralized warehouse creates more damage than the decentralized system.

Various supply chain risks are classified as disruptions, delays, systems, forecast, intel-
lectual property, procurement, receivables, inventory, and capacity [1]. Disruption is an
unpredictable rare event that disrupts the normal flow of goods and materials within a
supply chain that has devastating impacts through supply chain. Recent supply chain
disruption events include: Mattel recalled 19 million toys due to lead paint and loose
magnets in 2007. Ericsson suffered $2.34 billion loss for the mobile phone division due to
10 minute fire in Phillips semiconductor plant in Albuquerque, New Mexico 2000. Intel
suffered $1 billion revenue loss due to severe flooding in Thailand causing shortage of hard
drive supply in 2011. Toyota halted 14 assembly plants due to fire in brake parts sup-
plier Aisin Seiko plant in Japan 1997. In 2011, Tohoku earthquake and following tsunami
halted automotive semiconductor plants in Japan and North American and European
auto makers’ entire supply chain stop [2-4].

Sources of disruption are operational contingencies (equipment and system failure, sup-
plier bankruptcy, labor strikes, fire), natural disasters (hurricanes, earthquake), terrorism,
political instability, equipment breakdowns, product defects, and transit/custom delays
[5].
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Previous research on supply chain disruption suggests various mitigation strategies:
dual sourcing, inventory mitigation, and facility location and design. Inventory control,
dual sourcing, and acceptance strategies are presented for a single-product two-supplier
model using base stock policy. Optimal mitigation strategy for frequent-short disruptions
in unreliable supplier with infinite capacity/inflexible reliable supplier is backup inventory
while for rare long disruptions, dual sourcing is optimal [6,7]. Optimization methodology
was also used for optimal design of supply chain network under disruption. A linear
programming based optimization model was developed to compute risk-exposure index of
downstream nodes of an upstream node failure during predefined periods [8]. Generalized
facility location model and a variant of P -median models minimizing expected total cost
are also developed when each facility has disruption probability [9].

While many optimization models use static parameters, to evaluate the impact of dis-
ruption and to assess mitigation strategies in a more dynamic setting, various simulation
models are developed. Simulation models can be used to calculate risk exposures of the
existing supply chain network. A discrete event simulation model for a three-echelon net-
work of a consumer packaged goods company was developed [10]. Disruption frequency
and duration were modeled using a Monte Carlo simulation package using surveys of client
company. Another Monte Carlo simulation combines @Risk and network flow model that
computes path flow averages when a node or an arc fails [11]. Adaptive ordering policy
is examined in a multi-echelon network using agent simulation [12]. Related with the
supply chain risk management, business continuity management (BCM) is a corporate
governance standard developed for auditing and assessing organization’s preparedness for
business disruptions [13].

In this paper, we describe performance of a discrete event simulation model for three-
echelon supply chain based on Arena simulation software. In the proposed model, each
supply chain node’s source, make, and deliver subsystems are separately modeled accord-
ing to the supply chain operation reference (SCOR) model; disruptions are assumed to
occur at make and deliver subsystems independently so the proposed model can capture
aggregated upstream node/link failure effects to the downstream node; using generated
failure data, one can estimate disruption probability distribution in the proposed model
without commercial Monte Carlo simulator.

This paper is organized as follows. In Section 2, SCOR based supply chain and (s, S)
inventory policy, disruption models are described. In Section 3, simulation results are pre-
sented for two-echelon and three-echelon system with backup strategy, down probability,
and ramp up time variations and Section 4 concludes the paper.

2. Simulation Model. A general supply chain consists of multiple components including
manufacturer, supplier, transporter, warehouse, and retailers. The supply chain opera-
tion reference (SCOR) is developed by the supply chain council (SCC). SCOR is a process
reference model containing standard description of management processes as well as mea-
surement metrics and best practices [14]. A single node in a supply chain network is
modeled as five management processes in SCOR: plan, source, make, deliver, and return.
In our simulation model, we only include source, make, and deliver.

Generic five management processes composing a supply chain network are presented
in Figure 1. The simulation model developed here consists of a distribution center (DC)
generating demand, a manufacturing plant (M1) replenishing orders from DC, a backup
inventory warehouse (BI), a backup manufacturing plant (M2), and two suppliers (S1,
S2) replenishing M1 and M2. Each node in this system are made of source (S), make (M),
or deliver (D). Entire model is presented in Figure 2. Using Arena simulation software,
M is modeled using ‘Process’ module, D is modeled using ‘Transport’ module with truck
capacities and truck ‘Resource’ module, and S is modeled as a generic (s, S) policy with
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Figure 1. SCOR model of a generic supply chain node

Figure 2. Multi-echelon supply chain simulation model

Figure 3. Arena simulation model

backorders being held in a ‘Hold’ module. Details of Arena simulation model are omitted
and Figure 3 presents entire Arena model.

Inventory policy is described using the following variables: inventory level (IL), in-
ventory position (IP), order quantity (Q), reorder point (s), order-up-to-level (S), de-
mand (D), backorder (B), and lead-time (L) [15]. In the following, x+ = max(x, 0),
x− = max(−x, 0).
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In the (s, S) policy, in each period, if IP ≤ s, Q = S − IP parts are ordered and it
is delivered in L periods. For DC, demand D is observed and variables are updated as
IL = (IL−D)+, B = (IL−D)− and IP = IL + Q−B. A disruption in M1 is modeled
as ‘Resource Failure’ in Arena with up time and down time both having exponential
distributions with parameters λU and λD, respectively. Thus, M1’s disruption state follows
a Markov chain with states ‘up’ and ‘down’ and the probability of down is λD/(λU +λD).
The performance of system is measured using holding, backorder and order cost, and fill
rate in DC. The total cost is represented as h(IL)+ +p(IL)− + c1(Q1)+ c2(Q2)+ cI(QI)+
Kδ(Q) where, h, p, c1, c2, cI are unit holding, stockout penalty, order cost to M1, M2, BI,
respectively, and K setup cost and δ(z) = 1 if z > 0 and δ(z) = 0, if z = 0. We assume
that h < p, c1 < c2 < cI .

3. Computational Experiment. We implemented our model using Arena v.14.7 and
all simulation run is carried with 10 batches and each batch consists of 100 days warm
up time and 10 years of simulation time [16]. In our preliminary simulation, we consider
simple two-echelon supply chain consisting of a retailer and a supplier with (s, S) policy.
Retailer’s demand D is distributed as normal distribution N(µ, σ), µ = 20, σ = 1, cost
parameters are h = 1, p = 20, K = 250. The simplest disruption model considered in lit-
erature uses geometric distribution with failure and recovery probability α, β, respectively
[17]. This disruption is also a Markov chain with failure probability α/(α + β).

When we model ‘Resource failure’ in Arena, we use exponential distribution as up and
down time distribution. We observed that exponential up and down time generates rarer
disruption with longer disruption length, while geometric disruption generates frequent
and shorter disruption length. This difference is observed in both Figure 4 and Figure
5. As the down probability increases, fill rate decrease and backorder cost increase in
geometric disruption are bigger than in exponential function disruption with same failure
probability. So, in our main simulation, we use exponential distribution as up/down
probability.

For general three-echelon model in Figures 2 and 3, demand process in DC is modeled
as a compound Poisson distribution with order size ranging from one to four with equal
probability. Average order inter-arrival time is assumed as an exponential with mean 4
hours. In DC’s source subsystem, IP is checked every day. We approximated compound
Poisson with normal distribution and found that daily demand is approximately N (15.01,

Figure 4. Fill rate variation in a simple two-echelon (s, S) policy with
respect to different disruption models
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Figure 5. Holding and backorder cost in a simple two-echelon (s, S) policy
with respect to different disruption models

6.69) and average lead time is 4 days. The optimal reorder point s and order-up-to-level
S are computed using an iterative heuristic for (R,Q) policy [15]. The iterative heuristic
finds R = 81, Q = 335, and we set s = 81, S = 416.

For our model, we assume that when the ‘Resource’ in M1 is failed, after τ days (ramp
up time), if there is enough storage in BI, orders can be transfered to BI and if there is not
enough storage in BI, orders are replenished from backup manufacturer M2. If ‘Resource’
in M1 becomes ‘Active’ state, M1 receives orders from DC.

Figure 6 shows total cost with respect to reserve inventory level when τ = 0 and only
BI is used as a backup. For DC, average order quantity Q = 190.2 and backup inventory
level in Figure 6 corresponds to multiples of Q. When up time is exponential(792) and
down time exponential(4), the total cost remains flat with over 97% fill rate. However,
for up/down = 392/3 and 1000/8, to achieve similar low total cost, reserve inventory level
increases: for 392/3 and 1000/8 cases, total costs become flat when reserve inventories

Figure 6. Total cost according to different disruptions when inventory
only backup is used
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Figure 7. Effect of disruption location in the three echelon inventory system

Table 1. Full backup with different ramp up time

Problem Cost Fill rate M2 (%) BI (%) Up time Down time Down prob.
1 112±4.86 0.9756 1.044 0.7036 792 4 0.0055
2 115.11±4.56 0.976 1.04 0.71 392 4 0.0083
3 114.6±5.22 0.9758 1.36 0.71 1000 8 0.0063
4 135.92±9.79 0.974 3.09 0.708 1000 16 0.0247
5 106.34±0.58 0.977 0 0 792 4 0.0060
6 108.68±2.5 0.9757 0 0.69 100 4 0.0378
7 151.72±23.82 0.9652 0.375 0.712 100 8 0.0694
8 203.22±166.78 0.9694 1 0.712 1000 16 0.0237

are higher than 4Q and 8Q, respectively. We note that the required reserve inventory is
affected by down probability λD/(λU + λD) and maximum down days.

Table 1 shows detailed result when both BI and M2 backups are used. Problems 1-4
correspond τ = 0 and Problems 5-8 correspond to τ = 2 weeks. Second column shows
the average total cost with 95% half width. Remaining columns are fill rate, percentage
of total orders covered by M2, percentage of total orders covered by BI, mean up time,
mean down time, and down probability. For ramp up time τ = 0, as the down probability
increases, the total cost also increases, but the fill rate remains flat. We can see that
as more disruption occurs, the percentage of total demand covered by M2 increases.
For τ = 2 weeks, Problem 8 has higher cost than Problem 7. This is caused by longer
disruption period during simulation run. As in Problems 1-4, as the disruption probability
increases, backup by M2 increases. For problems 1-8, BI has 4Q initial inventory.

4. Conclusions. In this paper, we developed a discrete event simulation model that
represents multi-echelon supply chain network. Previous simulation models for supply
chain with disruption scenarios assume simple structures for analysis. For periodic review
model, base-stock and (s, S) policy simulation models with deterministic lead time are
introduced in [17].

Even though our model is three-echelon model, each tier in our model consists of three
business processes and Arena processes are modeled individually. Our model can cover
both base-stock, (s, S), and (R,Q) policies with general disruption scenarios.
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We found that as the disruption probability increases, inventory alone is not a secure
mitigation plan and reserve inventory and backup manufacturer are secure mitigation
plan. The study on the supply chain disruption is still at the early stage and further
research is required to examine different disruption impacts such as full/partial inventory
loss or effects of the disruption response strategies.

Acknowledgment. This work is partially supported by the IT R&D program of MKE/
KEIT, [2016-10051103, Development of Cloud-based Procurement Management Technol-
ogy for SMEs] and by the Ministry of Trade, Industry and Energy (MOTIE), KOREA,
through the Education Program for Creative and Industrial Convergence (Grant Number
N0000717). The authors also gratefully acknowledge the helpful comments and sugges-
tions of the reviewers, which have improved the presentation.

REFERENCES

[1] S. Chopra and M. Sodhi, Managing risk to avoid supply-chain breakdown, MIT Sloan Manage. Rev.,
vol.46, pp.53-61, 2004.

[2] Y. Sheffi, The Resilience Enterprise: Overcoming Vulnerability for Competitive Advantage, MIT
Press, Cambridge, MA, 2005.

[3] A. Norrman and U. Jansson, Ericsson’s proactive supply chain risk management approach after
a serious sub-supplier accident, Int. J. of Physical Distribution & Logistics Manage., vol.34, no.5,
pp.434-456, 2004.

[4] C. A. MacKenzie, J. R. Santos and K. Barker, Measuring changes in international production from
a disruption: Case study of the Japanese earthquake and tsunami, Int. J. Prod. Econ., vol.138,
pp.293-302, 2012.

[5] C. W. Craighead, J. Blackhurst, M. J. Rugtusanatham and R. B. Handfield, The severity of supply
chain disruptions: Design characteristics and mitigation capabilities, Decision Sciences, vol.38, no.1,
pp.131-156, 2007.

[6] B. Tomlin, On the value of mitigation and contingency strategies for managing supply chain disrup-
tion risks, Manag. Sci., vol.52, no.5, pp.639-657, 2006.

[7] Z. Atan and L. V. Snyder, Inventory strategies to manage supply disruptions, in Managing Supply
Disruptions, H. Gurnani, A. Mehrotra and S. Ray (eds.), Springer Verlag, 2010.

[8] D. Simchi-Levi et al., Identifying risks and mitigating disruptions in the automotive supply chain,
Interfaces, vol.45, no.5, pp.375-390, 2015.

[9] L. V. Snyder, M. P. Scaparra, M. L. Daskin and R. C. Church, Planning for disruptions in supply
chain networks, in Tutorials in Operations Research Informs, M. P. Johnson, B. Norman and N.
Secomandi (eds.), 2006.

[10] A. J. Schmitt and M. Singh, Quantifying supply chain disruption risk using Monte-Carlo and discrete-
event simulation, Proc. of the 2009 Winter Simulation Conference, Piscataway, NJ, pp.1237-1248,
2009.

[11] L. A. Deleris and F. Erhun, Risk management in supply networks using Monte-Carlo simulation,
Proc. of the 2005 Winter Simulation Conference, Piscataway, NJ, pp.1643-1649, 2005.

[12] T. G. Schmitt, S. Kumar, K. E. Stecke, F. W. Glover and M. A. Ehlen, Mitigating disruptions in a
multi-echelon supply chain using adaptive ordering, Omega, vol.68, pp.185-198, 2017.

[13] ISO22310, Societal Security - Business Continuity Management Systems - Requirements, Terms and
Definitions, International Organization for Standardization, Switzerland, 2011.

[14] Supply Chain Council, SCOR Version 7.0 Overview, http://www.supply-chain.org, 2006.
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