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Abstract. In this paper, the problem of stability is investigated for a class of sampled-
data linear systems with two classes of sampling period: time-varying period and constant
period. This paper first models such a sampled-date input system as a continuous one,
where the control input has a piecewise-continuous delay. Then, sufficient conditions in
terms of linear matrix inequalities are derived by constructing a class of time-varying
Lyapunov functional to achieve the stability of the closed-loop time-delay system. The
feature of the constructed Lyapunov functionals is discontinuous at sampling time, but
its decrease of such Lyapunov functional at sampling time is guaranteed by construction.
Finally, an example is given to show the effectiveness of the proposed method.
Keywords: Sampled-data systems, Time-delay, Delay-dependent stability, Lyapunov-
Krasovskii functionals

1. Introduction. In the past decades, sampled-data control has played an increasingly
important role in control engineering practice because modern control systems usually
employ digital technology for controller implementation. Main issues on sampled-data
systems have been extensively studied in the literature [1-8] and the references therein.
It is known that a heavy temporary load of computation in a processor can corrupt the
sampling period. The stability properties of the system will be affected by the variations
of the sampling period [9-12]. In order to avoid this load, it is reasonable to schedule
the sampling period in the design. Therefore, this paper will focus on developing robust
stability conditions with respect to the variations of sampling period.

Sampled-data systems have been studied extensively and several methods have been
proposed in the studies of the sampled-data stabilization. The first one is based on lifting
technique [13], in which the problem is transformed into an equivalent finite-dimensional
discrete-time problem while maintaining the inter-sampling information of the system.
The second approach is based on the impulsive modeling of sampled-data systems in
which a time-varying periodic Lyapunov function is used [14,15]. The third approach is
based on modeling the sampled-data system as a continuous-time system with delayed
control inputs [16,17], which can be applied to systems with variable sampled-data. An
input delay approach using the Lyapunov-Krasovskii (LK) theorem is provided in [18].
In addition, discrete-time approaches [19-21], robust analysis techniques [16], impulsive
systems formulation and the use of looped-functionals have also been developed to study
the stability analysis and/or control synthesis [5, 22, 23]. [18] proposed a novel stability
analysis of linear systems with sampled-data inputs by the input delay approach and the
stability of impulsive systems. Nevertheless, these methods can still be improved.

This paper will propose the time-varying Lyapunov functional to study the stability of
continuous linear systems with sampled-data input. Two classes of sampling period will
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be considered for time-varying sampling period and constant sampling period, respec-
tively. First, we transform such continuous linear systems with sampled-data input into
a continuous linear time-delay system with a piecewise-continuous delay. Then, by the
developed time-varying Lyapunov functional, sufficient conditions in terms of linear ma-
trix inequalities are proposed to achieve the decreasing not only at the sampling instants
but also during the two successive sampling instants, thus to achieve the stability of the
closed-loop system.

The rest of this paper is organized as follows. Section 2 presents the problem formula-
tion. Main results are given in Section 3. Section 4 provides an example. Finally, some
conclusions are drawn in Section 5.

Notations: In the paper, the notations used are fairly standard. Rn donates the n-
dimensional Euclidean space. ∥·∥ denotes the Euclidean norm of vector ·. I denotes an
identity matrix of appropriate dimensions. ∗ denotes the symmetric black in one symmet-
ric matrix. P > 0 means that P is a real symmetric and positive definite matrix. λmax(P )
and λmin(P ) denote the maximum and minimum eigenvalue of a matrix P , respectively.
The superscript T stands for matrix transposition.

2. Problem Formulation. Consider the linear continuous time-invariant system:

ẋ = Ax + Bu, (1)

where x ∈ Rn is the system state variable, u ∈ Rm is the input vector, A and B are
constant matrices with appropriate dimensions.

The controller is actualized in discrete-time under a sampler and zero-order device:

u(t) = ud(tk) = Kx(tk), tk ≤ t < tk+1, (2)

where K ∈ Rn×m is a given gain, and the sampling instants tk, k = 0, 1, 2, . . ., satisfies
0 ≤ t0 < t1 < · · · < tk < · · · . Without loss of generality, we assume that the difference
between two successive sampling instants satisfies

τ1 ≤ tk+1 − tk ≤ τ2, ∀k = 0, 1, 2, . . . . (3)

Substituting (2) into (1), we obtain the following closed-loop system:

ẋ(t) = Ax(t) + Adx (t − τ(t)) , τ(t) = t − tk, tk ≤ t < tk+1, (4)

where Ad = BK, τ(t) is the time-varying delay. From (3), it follows that τ(t) ≤ τ2.
The objective of this paper is to present sufficient stability conditions to guarantee

stability of linear systems with sampled-data controller.

3. Main Results. We will provide the asymptotically stability results for sampled-data
systems with variable sampling intervals and constant sampling intervals, respectively.

3.1. Time-varying sampling period. In this section, we first state a theorem to guar-
antee that system (4) with a time-varying sampling period satisfying (3) is asymptotically
stable by employing a piecewise time-varying Lyapunov function.

Theorem 3.1. Assume that there exist scalars µ ≥ 1, τ2 and τ1 with τ2 ≥ τ1 > 0, n × n
matrices P1 > 0, P2 > 0, R > 0 and S > 0 and a 2n × n matrix N , such that

P2 − µP1 ≤ 0, (5)

Πlq + µτ2Π̂ < 0, (6)[
Πlq µτ2N
∗ −µτ2R

]
< 0 (7)

hold, where

ϑlq = υMT
1 PlM1 + MT

1 PlM3 + MT
3 PlM1 +

1

τq

MT
1 (P1 − P2)M1, l, q = 1, 2,
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Πlq = ϑlq − MT
2 SM2 − NM2 − MT

2 NT ,

Π̂ = MT
2 SM3 + MT

3 SM2 + MT
3 RM3,

with υ = ln µ
τ1

and the matrices M1 = [ I 0 ], M2 = [ I −I ], M3 = [ A Ad ]. Then

system (4) is asymptotically stable for any time-varying period less than τ2.

Proof: For any given sampling instant {tk} and the difference between two successive
sampling instants satisfies 0 < τ1 ≤ tk+1 − tk ≤ τ2. When t ∈ [tk, tk+1), k ∈ N , we define
two piecewise linear functions ρ, ρ1 ∈ [t0,∞) → R+ as follows:

ρ(t) =
t − tk

tk+1 − tk
, ρ̃(t) = 1 − ρ(t), ρ1(t) =

1

tk+1 − tk
. (8)

It is easy to see that ρ(t) ∈ [0, 1), ρ(tk) = 0, ρ
(
t−k

)
= ρ

(
t−k+1

)
= 1. Moreover, there exists

a function ρ2(t) ∈ [0, 1] such that: ρ1(t) = 1
τ1

ρ2(t) + 1
τ2

ρ̃2(t), where ρ̃2(t) = 1 − ρ2(t). For

given scalar µ ≥ 1, define the piecewise time-varying function φ(t) association with ρ(t):

φ(t) = µρ(t)−1. (9)

Then, one can verify that 1
µ
≤ φ(t) < 1, t ≥ 0.

By using the functions ρ(t) and φ(t) defined above, when t ∈ [tk, tk+1), we construct
the time-varying Lyapunov function for system (4):

V (t, x(t)) = V1(t, xt) + V2(t, xt), (10)

where

V1(t, x(t)) = φ(t)xT (t)P (t)x(t),

V2(t, x(t)) = (τ2 − τ(t))ξT
0 (t)Sξ0(t) + (τ2 − τ(t))

t∫
tk

ẋT (s)Rẋ(s)ds,

with P (t) = ρ(t)P1 + ρ̃(t)P2 and ξ0(t) = x(t) − x(tk).
It is easy to obtain that λ2

µ
∥x∥2 ≤ V1(t, x) ≤ λ1∥x∥2, where λ1 = max{λ(Pl), l = 1, 2}

and λ2 = min{λ(Pl), l = 1, 2}. Since S > 0 and R > 0, then V2(t, x) ≥ 0.
To prove the stability of the system, we will show that V is decreasing in each sampling

period and decreasing discontinuously at each sampled instant.
Next, we first show that V in (10) is decreasing discontinuously at each sampled instant.
Consider the functional V just before the sampling instant tk, denoted as t−k . Then,

we have that φ
(
t−k

)
= µρ(t−k )−1 = µ1−1 = 1, φ

(
t+k

)
= µρ(t+k )−1 = µ0−1 = 1

µ
, P

(
t−k

)
=

ρ
(
t−k

)
P1 + ρ̃

(
t−k

)
P2 = P1 and P

(
t+k

)
= ρ

(
t+k

)
P1 + ρ̃

(
t+k

)
P2 = P2. Thus one has that:

V
(
t−k , x

(
t−k

))
= φ

(
t−k

)
xT

(
t−k

)
P

(
t−k

)
x

(
t−k

)
+

(
τ2 − τ

(
t−k

))
ξT
0

(
t−k

)
Sξ0

(
t−k

)
+

(
τ2 − τ

(
t−k

)) t−k∫
tk−1

ẋT (s)Rẋ(s)ds

= xT
(
t−k

)
P1x

(
t−k

)
+

(
τ2 − τ

(
t−k

))
ξT
0

(
t−k

)
Sξ0

(
t−k

)
+

(
τ2 − τ

(
t−k

)) t−k∫
tk−1

ẋT (s)Rẋ(s)ds

≥ xT
(
t−k

)
P1x

(
t−k

)
. (11)
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Just after the sampling instant, denoted as t = t+k , we have that

V
(
t+k , x

(
t+k

))
= φ

(
t+k

)
xT

(
t+k

)
P

(
t+k

)
x

(
t+k

)
+

(
τ2 − τ

(
t+k

))
ξT
0

(
t+k

)
Sξ0

(
t+k

)
+

(
τ2 − τ

(
t+k

)) t+k∫
tk

ẋT (s)Rẋ(s)ds

=
1

µ
xT

(
t+k

)
P2x

(
t+k

)
. (12)

It is easy to see that the last two terms of the above functionals are zero since ξ0

(
t+k

)
= 0.

By P1 ≥ 1
µ
P2 in (5), we have that

V
(
t−k , x

(
t−k

))
≥ V

(
t+k , x

(
t+k

))
. (13)

Then it means that V in (10) is decreasing discontinuously at each sampled instant.
Now, we calculate the derivative of V during each sampling period t ∈ [tk, tk+1).

For simplicity, define ζ(t) =
[
xT (t), xT (tk)

]T
. Then, we have that x(t) = M1ζ(t),

ξ0(t) = x(t) − x(tk) = M2ζ(t), ẋ(t) = Ax(t) + Adx(t − τ(t)) = M3ζ(t).

Since ξ0(t)−
∫ t

tk
ẋ(s)ds = 0, then 2ζT (t)NM2ζ(t)−2ζT (t)N

∫ t

tk
ẋ(s)ds = 0. Since R > 0,

then we can obtain the following inequality:

2ζT (t)Nẋ(s) ≤ ζT (t)NR−1NT ζ(t) + ẋT (s)Rẋ(s). (14)

Integrating the previous inequality both sides in the interval [tk, t], where ẋ is continuous,
we then obtain the following inequality:

−
t∫

tk

ẋT (s)Rẋ(s)ds ≤ −2ζT (t)NM2ζ(t) + τ(t)ζT (t)NR−1NT ζ(t). (15)

Obviously, we can have that:

V̇ (t, x(t))

≤ φ(t)xT (t)[υP (t) + ρ1(t)(P1 − P2)]x(t) + 2φ(t)xT (t)P (t) [Ax(t) + Adx (tk)]

+ 2(τ2 − τ(t))ξT
0 (t)Sẋ(t) + (τ2 − τ(t))ẋT (t)Rẋ(t) − ξT

0 (t)Sξ0(t)

−
t∫

tk

ẋT (s)Rẋ(s)ds

≤ φ(t)ζT (t)
[
υMT

1 P (t)M1 + ρ1(t)M
T
1 (P1 − P2)M1 + 2MT

1 P (t)M3

]
ζ(t)

+ (τ2 − τ(t))ζT (t)
(
MT

2 SM3 + MT
3 SM2 + MT

3 RM3

)
ζ(t)

− ζT (t)MT
2 SM2ζ(t) −

t∫
tk

ẋT (s)Rẋ(s)ds

≤ φ(t)ζT (t)
{
υMT

1 P (t)M1 + ρ1(t)M
T
1 (P1 − P2)M1 + 2MT

1 P (t)M3

}
ζ(t)

+ ζT (t)

{
(τ2 − τ(t))

(
MT

2 SM3 + MT
3 SM2 + MT

3 RM3

)
−MT

2 SM2 − NM2 − MT
2 NT + τ(t)NR−1NT

}
ζ(t). (16)

We choose a function ρ2(t) ∈ [0, 1] and ρ2(t) = 1−ρ̃2(t), such that ρ1(t) = 1
τ1

ρ2(t)+
1
τ2

ρ̃2(t).
Then, we have

V̇ (t, x(t))
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≤ φ(t)ζT (t)

{
υMT

1 (ρ(t)P1 + ρ̃(t)P2)M1 + MT
1

(
1
τ1

ρ2(t) + 1
τ2

ρ̃2(t)
)

(P1 − P2)M1

+ 2MT
1 (ρ(t)P1 + ρ̃(t)P2)M3

}
ζ(t)

+ ζT (t)

{
(τ2 − τ(t))

(
MT

2 SM3 + MT
3 SM2 + MT

3 RM3

)
+ τ(t)NR−1NT − MT

2 SM2 − NM2 − MT
2 NT

}
ζ(t)

= φ(t)ζT (t)

 ρ(t)
(
υMT

1 P1M1 + 2MT
1 P1M3

)
+ ρ̃(t)

(
υMT

1 P2M1 + 2MT
1 P2M3

)
+

(
1
τ1

ρ2(t) + 1
τ2

ρ̃2(t)
)

MT
1 (P1 − P2)M1

 ζ(t)

+ ζT (t)

{
(τ2 − τ(t))

(
MT

2 SM3 + MT
3 SM2 + MT

3 RM3

)
+ τ(t)NR−1NT − MT

2 SM2 − NM2 − MT
2 NT

}
ζ(t). (17)

It is obvious that φ(t) satisfies 1 ≤ µφ(t) < µ. Then, with the help of (9), we can obtain

V̇ (t, x(t))

≤ ζT (t)[ρ(t)(ρ2(t)φ(t)ϑ11 + ρ̃2(t)φ(t)ϑ12)]ζ(t)

+ ζT (t)[ρ̃(t)(ρ2(t)φ(t)ϑ21 + ρ̃2(t)φ(t)ϑ22)]ζ(t)

+ ζT (t)

[
(τ2 − τ(t))

(
MT

2 SM3 + MT
3 SM2 + MT

3 RM3

)
−MT

2 SM2 − NM2 − MT
2 NT + τ(t)NR−1NT

]
ζ(t)

≤ φ(t)ζT (t)

ρ(t)

 ρ2(t)
(
Π11 + µτ2Π̂ + µτ(t)

(
NR−1NT − Π̂

))
+ ρ̃2(t)

(
Π12 + µτ2Π̂ + µτ(t)

(
NR−1NT − Π̂

))  ζ(t)

+ φ(t)ζT (t)

ρ̃(t)

 ρ2(t)
(
Π21 + µτ2Π̂ + µτ(t)

(
NR−1NT − Π̂

))
+ ρ̃2(t)

(
Π22 + µτ2Π̂ + µτ(t)

(
NR−1NT − Π̂

))  ζ(t)

< 0. (18)

Therefore, system (4) is asymptotically stable.

Remark 3.1. When P1 = P2 and µ = 1, the Lyapunov functional V in (10) reduces to
the one in [18]. If P1 = P2 and µ = 1, the condition (5) in Theorem 3.1 can be removed.
Thus, in this case, all conditions of Theorem 1 in [18] can be recovered by the ones of
Theorem 3.1 obtained in this paper.

3.2. Constant sampling period. Now, we consider the case of constant sampling pe-
riod, that is, τ1 = τ2 ≡ τ .

Theorem 3.2. Assume that there exist positive scalars τ > 0 and µ ≥ 1, and n × n
matrices P1 > 0, P2 > 0, R > 0, S > 0 and n × n matrix U and 2n × n matrix N , such
that

P2 − µP1 ≤ 0, (19)

Π̃l + µτ Π̃ < 0, (20)[
Π̃l µτN
∗ −µτR

]
< 0 (21)

hold, where Π̃l = Πl − MT
4 UM2 − MT

2 UT M4, Π̃ = Π̂ + MT
4 UM3 + MT

3 UT M4, with Πl =

ϑl − MT
2 SM2 − NM2 − MT

2 NT , Π̂ = MT
2 SM3 + MT

3 SM2 + MT
3 RM3, ϑl = υMT

1 PlM1 +
MT

1 PlM3 + MT
3 PlM1 + 1

τ
MT

1 (P1 − P2)M1, l = 1, 2, and υ = ln µ
τ

and Mi for i = 1, 2, 3 are

given in Theorem 3.1 and M4 = [ 0 I ]. Then system (4) is asymptotically stable for the
constant sampling period τ .
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Proof: The proof follows the line of Theorem 3.1. Consider the Lyapunov functional:

Ṽ1(t, x(t)) = V (t, x(t)) + Ṽ2(t, x(t)), (22)

where V (t, x(t)) is defined in (10) and Ṽ2(t, x(t)) = 2(τ − τ(t))xT (tk)Uξ0(t). Note that
Ṽ2(t, x(t)) is not necessary positive. Due to the constant and known sampling period τ ,
one has:

Ṽ2

(
t−k , x

(
t−k

))
= Ṽ2

(
t+k , x

(
t+k

))
= 0, ∀k > 0. (23)

Nothing that x(tk) = (M1 − M2)ζ(t) = M4ζ(t), the derivative of Ṽ1 satisfies:

˙̃V1(t, x(t))

= V̇ (t, x(t)) + 2(τ − τ(t))ζT (t)MT
4 UM3ζ(t) − 2ζT (t)MT

4 UM2ζ(t)

≤ ζT (t)[ρ(t)(ρ2(t)φ(t)ϑ1 + ρ̃2(t)φ(t)ϑ1)]ζ(t) + ζT (t)[ρ̃(t)(ρ2(t)φ(t)ϑ2 + ρ̃2(t)φ(t)ϑ2)]ζ(t)

+ ζT (t)

 (τ − τ(t))
(
MT

2 SM3 + MT
3 SM2 + MT

3 RM3 + MT
4 UM3 + MT

3 UT M4

)
−MT

2 SM2 − NM2 − MT
2 NT − MT

4 UT M2 − MT
2 UT M4

+ τ(t)NR−1NT

 ζ(t)

≤ φ(t)ζT (t)ρ(t)ρ2(t)
(
Π̃1 + µτ Π̃ + µτ(t)

(
NR−1NT − Π̃

))
ζ(t)

+ φ(t)ζT (t)ρ(t)ρ̃2(t)
(
Π̃1 + µτ Π̃ + µτ(t)

(
NR−1NT − Π̃

))
ζ(t)

+ φ(t)ζT (t)ρ̃(t)ρ2(t)
(
Π̃2 + µτ Π̃ + µτ(t)

(
NR−1NT − Π̃

))
ζ(t)

+ φ(t)ζT (t)ρ̃(t)ρ̃2(t)
(
Π̃2 + µτ Π̃ + µτ(t)

(
NR−1NT − Π̃

))
ζ(t)

< 0. (24)

Then, system (4) is asymptotically stable for the constant sampling period τ satisfying
(20) and (21).

Remark 3.2. When P1 = P2 and µ = 1, the Lyapunov functional Ṽ1(t, x(t)) in (22)
reduces to the one in [18]. If P1 = P2 and µ = 1, the condition (19) in Theorem 3.2 can
be removed. Thus, in this case, all conditions of Theorem 2 in [18] can be recovered by
the ones of Theorem 3.2 obtained in this paper.

4. Example. Consider system (1) from [18] with

A =

[
0 1
0 −0.1

]
and

Ad =

[
0 0

−0.375 −1.15

]
.

When τ = 1.71986789, from Theorem 3.2, we obtain

P1 =

[
33.6761 81.4631
81.4631 202.0685

]
, P2 =

[
33.6728 81.4629
81.4629 202.0675

]
,

R =

[
34.0198 105.5804
105.5804 328.6493

]
, S =

[
0.7145 0.7265
0.7265 0.7409

]
,

N =


0.6034 0.8925
24.4563 76.0176
−35.0234 −108.4864
−106.6143 −331.7436

 , U =

[
4.3197 14.6320
12.7308 44.1289

]
.
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The maximum allowable constant sampling period obtained by Theorem 3.2 is bigger
than 1.7198 obtained in [18]. Therefore, it can be seen that the results from Theorem 3.2
are less conservative than the one in [18].

5. Conclusions. Using the time-varying Lyapunov functional approach, the stability
problem of sampled-data linear systems has been investigated in this paper. Two types of
sampling period, time-varying and constant sampling period are respectively considered.
First, such a sampled-date input system has been modelled as a continuous time-varying
delay system, where the control input has a piecewise-continuous delay. Then, to guar-
antee the stability of the closed-loop delay system, sufficient conditions in terms of linear
matrix inequalities are developed by using time-varying Lyapunov functional method.
Based on the constructed time-varying Lyapunov functional, such a functional is forced
to decrease not only at the sampling instants but also during the two successive sam-
pling instants. In the future we will focus on researching the feature of the systems with
parameter uncertainties.
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