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Abstract. There exists deviation caused by some subjective experience for rule premise
reduction in reasoning process of MISO fuzzy systems, and how to objectively determine
the weights of rule antecedent components in MISO fuzzy systems is worth studying. In
this paper, information entropy is used to determine the weights of antecedent compo-
nents in rule premise reduction, which not only shows relative importance of antecedent
components in fuzzy reasoning, but avoids the subjective deviation by dynamically adjust-
ing weights. In addition, it is proved that the reduction does not change the interpolation
approximation of the improved MISO fuzzy systems. Therefore, this premise reduction
method is practicable.
Keywords: Fuzzy reasoning, MISO fuzzy system, Entropy weight, Multifactorial func-
tion, Interpolation approximation

1. Introduction. Reasonable and effective design methods of fuzzy inference engine are
very important for fuzzy control systems. In 1973, Zadeh proposed CRI (Compositional
Rule of Inference) [1] such that the research of fuzzy inference and fuzzy systems develops
rapidly. Furthermore, Mamdani et al. discussed the mechanism of fuzzy control systems
and found some significant conclusions [2-13]. Particularly, Li proved that a fuzzy control
system is an interpolation function in mathematical essence [14], and proposed variable
universe adaptive fuzzy control theory [15,16].

Obviously, the application of fuzzy systems has achieved remarkable success in practice
for the past few decades. However, the logical foundation and some details in inference
engine of fuzzy systems, especially MISO (Multiple-Input Single-Output) fuzzy systems,
are worthy of further study [17-20]. From the various expressions of the output func-
tions of MISO fuzzy systems, although the inference methods are different, the output
functions of existing MISO fuzzy systems can be represented approximately as weighted
average functions of the center of the peak points of rule consequents [19], in which the
determination of the weights is very critical, and the weights are closely related to the
reduction of antecedent state values in reasoning process.

In traditional premise reduction methods, the weights of rule antecedents are usually
given by specialists in various fields, which causes subjective deviation in premise reduc-
tion. This paper focuses on the premise reduction of MISO fuzzy systems and tries to use
information entropy to solve the deviation issue.

Shannon proposed information entropy firstly in 1948 [21]. Information entropy is a
measurement of systemic confusion that has many important applications in cybernetics,
probability theory, number theory, astrophysics, life science, information science and so
on [22-26]. In multiple objective decision making, entropy can reduce the subjective
deviation in weight determination [24]. Entropy is simple and feasible that calculates
weights objectively according to the information given by index data. We can reduce the
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state values of antecedent components of fuzzy rules by using entropy weights so that
the weights of antecedent components can be dynamically adjusted according to various
input values. In this paper, a new premise reduction algorithm for MISO fuzzy systems
based on entropy weights is given.

The paper is organized as follows. In Section 2, we give some preliminary knowledge.
In Section 3, according to the distribution of membership degrees of input values for
antecedent fuzzy sets, we use the entropy to determine the weights of all the antecedent
components in reasoning process, and give a new premise reduction algorithm for MISO
fuzzy systems. In Section 4, we discuss the interpolation approximation property of the
improved MISO fuzzy systems based on entropy weights, followed by conclusion in Section
5.

2. Preliminaries.

2.1. General form of output functions of MISO fuzzy systems. By analyzing
mathematical expressions of output functions of existing fuzzy systems, we give the
following general form of MISO fuzzy systems. Firstly, it is necessary to know sev-
eral signs. Let X1, X2, . . . , Xm be m input universes, and Y be an output universe.
A1 = {Ai11 | 1 ≤ i1 ≤ n1}, A2 = {Ai22 | 1 ≤ i2 ≤ n2}, . . ., Am = {Aimm | 1 ≤
im ≤ nm}, B = {Bi1i2...im | 1 ≤ ij ≤ nj, j = 1, 2, . . . , m} are the fuzzy partitions to
X1, X2, . . . , Xm, Y , respectively. For convenience, we suppose X1, X2, . . . , Xm, Y are all
[0, 1], and xijj, yi1i2...im are the peak points of Aijj, Bi1i2...im (1 ≤ ij ≤ nj, j = 1, 2, . . . , m)
respectively, where

0 ≤ x11 < · · · < xn11 ≤ 1, . . . , 0 ≤ x1m < · · · < xnmm ≤ 1, 0 ≤ y1 < · · · < yn1n2...nm ≤ 1.

A1, . . . ,Am,B can be regarded as linguistic variables. Then n1n2 . . . nm fuzzy rules are
generated as follows,

If x1 is Ai11 and x2 is Ai22 and · · · and xm is Aimm then y is Bi1i2...im .

Most of the output functions of existing fuzzy systems can be represented approxi-
mately as weighted average functions of the center of the peak points of rule consequents,
where the center of the peak point y of a rule consequent satisfies Bi1i2...im(y) = 1. The
i1i2 . . . imth weight is equal to the activation degree of the i1i2 . . . imth rule, denoted by
µi1i2...im(x1, x2, . . . , xm), ij = 1, 2, . . . , nj; j = 1, 2, . . . , m. The output function of a MISO
fuzzy system can be approximated as follows,

f(x1, x2, . . . , xm) =

n1∑
i1=1

n2∑
i2=1

· · ·
nm∑

im=1

µi1i2...im(x1, x2, . . . , xm)yi1i2...im

n1∑
i1=1

n2∑
i2=1

· · ·
nm∑

im=1

µi1i2...im(x1, x2, . . . , xm)
. (1)

In various fuzzy inference engines, output functions of some familiar fuzzy reasoning
algorithms can be approximately reduced to Equation (1). These algorithms include CRI
(Compositional Rules of Inference) algorithm, (+, ·)-centroid algorithm, simple reasoning
algorithm, function reasoning algorithm, characteristic expansion reasoning algorithm,
full implication triple I algorithm, and so on [14,27]. µi1i2...im(x1, x2, . . . , xm) is different
from one another in these algorithms, but the output functions have one thing in common,
that is, µi1i2...im(x1, x2, . . . , xm) is related to the membership degrees of the input values
for the antecedents of every rule. Input-output data pairs can be considered as the central
values of the peak points of antecedents and consequents in reasoning rules. Therefore,
the key to design of MISO fuzzy systems lies in how to calculate µi1i2...im(x1, x2, . . . , xm).
Multifactorial functions are valid tools for decreasing dimensions in factor spaces [17], and
µi1i2...im(x1, x2, . . . , xm) can be constructed by multifactorial functions [19].
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Remark 2.1. In this paper, all of antecedent fuzzy sets satisfy consistency, i.e., if there
exists fuzzy set Ak such that Ak(x0) = 1, then Aj(x0) = 0 for ∀j ̸= k.

2.2. Entropy weights. Entropy is used as a measurement of uncertainty in information
theory [26]. The larger the entropy value, the greater the uncertainty.

Definition 2.1. Suppose a system is in m states S1, S2, . . . , Sm, pi is the probability that
the system is in the state Si, where i = 1, 2, . . . , m; 0 ≤ pi ≤ 1, and

∑m
i=1 pi = 1. The

entropy H(p1, p2, . . . , pn) can be calculated by the following formula,

H(p1, p2, . . . , pn) = −k
n∑

i=1

pi ln pi. (2)

Particularly, the entropy H has the unique form

H(p1, p2, . . . , pn) = −
n∑

i=1

pi ln pi, (3)

if H satisfies the following three conditions,

(1) H(p1, p2, . . . , pn) ≤ H
(

1
n
, 1

n
, . . . , 1

n

)
(extremum property);

(2) H(p1, p2, . . . , pn) = H(p1, p2, . . . , pn, 0);

(3) H(A,B) = H(A) + H(B/A).

Remark 2.2. In Equation (2) and Equation (3), we set 0 ln 0 = 0 when ∃pi = 0 (i =
1, 2, . . . , n).

3. MISO Fuzzy Systems Based on Entropy Weights. In [19], multifactorial func-
tions are used to calculate µi1i2...im(x1, x2, . . . , xm). The following lists several common
forms of µi1i2...im(x1, x2, . . . , xm) based on multifactorial functions.

Example 3.1.

µi1i2...im(x1, x2, . . . , xm) =
m∑

j=1

ωjAijj(xj),

where ωj is the weight of the jth antecedent component in fuzzy reasoning for an input
variable (x1, x2, . . . , xm), ωj ∈ [0, 1] and

∑m
j=1 ωj = 1.

Example 3.2.

µi1i2...im(x1, x2, . . . , xm) =

[
m∑

j=1

ωj

(
Aijj(xj)

)p

] 1
p

,

where p > 0, ωj ∈ [0, 1] and
∑m

j=1 ωj = 1.

Example 3.3.

µi1i2...im(x1, x2, . . . , xm) =
m∨

j=1

ωjAijj(xj),

where ωj ∈ [0, 1] and
∨m

j=1 ωj = 1.

Example 3.4.

µi1i2...im(x1, x2, . . . , xm) =
m∨

j=1

(
ωj ∧ Aijj(xj)

)
,

where ωj ∈ [0, 1] and
∨m

j=1 ωj = 1.
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Entropy can avoid the subjective deviation in traditional weighting methods, so it can
objectively reflect the values of ωj (j = 1, 2, . . . ,m) in reasoning process.

Therefore, we can adjust the values of ωj (j = 1, 2, . . . , m) dynamically according to
input values x1, x2, . . . , xm with entropy. If the membership degrees of the input com-
ponent value xj for fuzzy sets Aijj (ij = 1, 2, . . . , nj) have great difference, then the jth
antecedent component has a great effect on reasoning. On the contrary, according to the
extremum property of entropy weights, if the membership degrees of the input component
value xj for fuzzy sets Aijj (ij = 1, 2, . . . , nj) are almost equal, then the jth antecedent
component has little effect on reasoning.

According to the analysis above, let

Hj = −
nj∑

ij=1

Aijj(xj) ln Aijj(xj), (j = 1, 2, . . . ,m). (4)

The entropy value is the maximum when the values of Aijj(xj) are equal for all ij =
1, 2, . . . , nj, i.e., max Hj = ln nj. The normalized entropy value ej of the jth antecedent
component is given as follows,

ej =
1

ln nj

· Hj, (j = 1, 2, . . . , m). (5)

The maximum value of ej is 1 when the values of Aijj(xj) are equal for all ij =
1, 2, . . . , nj, and 0 ≤ ej ≤ 1. Thus, we can define the weight of the jth antecedent
component in reasoning for the input value xj, that is,

wj =
1

m −
m∑

j=1

ej

(1 − ej), (6)

where 0 ≤ wj ≤ 1 and
∑m

j=1 wj = 1.

4. Interpolation Approximation of the MISO Fuzzy Systems Based on Entropy
Weights. We discuss whether the MISO fuzzy systems based on entropy weights have
interpolation property or not from the point of view of function approximation.

For a given x∗ , (x∗
1, x

∗
2, . . . , x

∗
m) ∈ X1 ×X2 × · · · ×Xm, we use singleton fuzzification,

i.e.,

A∗(x) =

{
1, x = x∗,
0, x ̸= x∗.

Theorem 4.1. On the basis of above-mentioned assumption, there exists a group of base
elements Φ = {ϕi1i2...im | 1 ≤ i1 ≤ n1, . . . , 1 ≤ im ≤ nm} such that the MISO fuzzy systems
based on entropy weights can be expressed as some piecewise interpolation functions that
take ϕi1i2...im as their base functions, that is,

f(x1, x2, . . . , xm) =

n1∑
i1=1

n2∑
i2=1

· · ·
nm∑

im=1

ϕi1i2...im(x1, x2, . . . , xm)yi1i2...im . (7)

Proof: For convenience, we take Example 3.1 to prove. Examples 3.2, 3.3 and 3.4 have
similar proofs. According to the interpolation mechanism of fuzzy systems in [14], for the
given (x∗

1, x
∗
2 . . . , x∗

m) ∈ X1 × X2 × · · · × Xm, the output of the fuzzy systems should be

y∗ = f (x∗
1, x

∗
2, . . . , x

∗
m) =

n1∑
i1=1

n2∑
i2=1

· · ·
nm∑

im=1

µi1i2...im(x∗
1, x

∗
2, . . . , x

∗
m)yi1i2...im

n1∑
i1=1

n2∑
i2=1

· · ·
nm∑

im=1

µi1i2...im(x∗
1, x

∗
2, . . . , x

∗
m)

. (8)
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Let
αi1i2...im(x∗

1, x
∗
2, . . . , x

∗
m) = µi1i2...im(x∗

1, x
∗
2, . . . , x

∗
m),

βi1i2...im(x∗
1, x

∗
2, . . . , x

∗
m) =

1
n1∑

i1=1

n2∑
i2=1

· · ·
nm∑

im=1

αi1i2...im(x∗
1, x

∗
2, . . . , x

∗
m)

,

ϕi1i2...im(x∗
1, x

∗
2, . . . , x

∗
m) = βi1i2...im(x∗

1, x
∗
2, . . . , x

∗
m) · αi1i2...im(x∗

1, x
∗
2, . . . , x

∗
m).

When x∗
1 = xi11, x

∗
2 = xi22, . . . , x

∗
m = ximm, then Ai11(xi11) = Ai22(xi22) = · · · =

Aimm(ximm) = 1, Ak11(xi11) = Ak22(xi22) = · · · = Akmm(ximm) = 0 (k ̸= i). According to
Equations (4)-(6), e1 = e2 = · · · = em = 0, furthermore, w1 = w2 = · · · = wm = 1

m
.

On the basis of the above, we can get y∗ = yi1i2...im .
If we put

f(x1, x2, . . . , xm) ,
n1∑

i1=1

n2∑
i2=1

· · ·
nm∑

im=1

ϕi1i2...im(x1, x2, . . . , xm)yi1i2...im ,

then (7) is obtained.

Remark 4.1. From Theorem 4.1, wj = 0 when there exists j ∈ {1, 2, . . . , m} such that
Aijj

(
x∗

j

)
are equal for all ij = 1, 2, . . . , nj, and the jth antecedent component has no effect

on reasoning.

5. Conclusion. By analyzing aggregation problem of antecedent components in MISO
fuzzy systems, we used entropy to reduce the state values of antecedent components of
fuzzy rules. The method not only shows the relative importance of every antecedent com-
ponent in MISO fuzzy systems, but also can dynamically adjust the weights of antecedent
components according to various input values. In addition, the improved MISO fuzzy
systems still have the interpolation property in function approximation. Therefore, the
proposed premise reduction method has theoretical and practical significance. In view of
approximation properties of MISO fuzzy systems to unknown multivariate functions, we
will study the approximation accuracy of MISO fuzzy systems based on entropy weights
in future.
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