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Abstract. Hybrid censoring is an efficient scheme for saving test time and cost. How-
ever, a hybrid censoring life test often induces a complicated likelihood function and makes
the search of maximum likelihood estimates (MLEs) of the model parameters difficult. In
this paper, we use the differential evolution (DE) and genetic algorithm (GA) methods to
obtain the MLEs of generalized half normal distribution (GHN) parameters, based on hy-
brid censoring samples, through Monte Carlo simulations. Simulation results show that
the DE method outperforms the GA method with smaller bias and mean squared error.
The DE method has great potential instead of gradient computation methods to obtain
the MLEs of GHN parameters from a hybrid censoring life test.
Keywords: Differential evolution method, Genetic algorithm, Maximum likelihood es-
timation method, Quasi-Newton method

1. Introduction. For saving test cost and time, censoring methods have been widely
applied to shortening the duration of life test. The type I and type II censoring schemes are
two most widely used censoring methods for implementing life tests. When implementing
a life test with type I censoring scheme, the life test is terminated at a predetermined
testing time and the surviving products are treated as censoring. A life test with type
II censoring is implemented to stop the life test when a predetermined number of failed
products are obtained. It is easier to implement statistical inference based on type II
censoring samples than that based on type I censoring samples. However, the experimental
time of a type I censoring test is predetermined and the experimental time of a type II
censoring test is random. The type I and type II censoring schemes have merits and
also contains shortcomings for practical applications. Reliability inferences using type I
or type II censoring schemes have been widely studied. Comprehensive introduction for
using type I and type II censoring schemes can be found in [1,2].

Hybrid censoring scheme can be an alternative from the type I and type II censoring
schemes. The hybrid censoring scheme is a mixture of the type I and type II censoring
schemes, which was initially studied by [3]. A hybrid censoring test is terminated when
either reaching a predetermined time (say T ) or obtaining a predetermined number of
failed products (say r). Hence, the hybrid censoring test can be terminated at a random
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time of min(Xr:n, T ), where Xi:n is the ith shortest lifetime of products in the life test
for 1 ≤ i ≤ n. This censoring scheme is known as hybrid type I censoring. It is noted
that the type I and type II censoring schemes are special cases of hybrid type I censoring
scheme. The working data for statistical inference can be either the {X1:n, X2:n, . . . , Xr:n}
if Xr:n < T or {X1:n, X2:n, . . . , Xm:n} if Xm+1:n > T and m < r. Some reliability studies
about using the hybrid censoring scheme for life test are [4-12], in which Ahmadi et al.
[4] proposed estimation methods for the GHN distribution based on progressive type II
censoring samples. Asgharzadeh et al. [5] suggested methods to predict future failures in
Weibull distribution with hybrid censoring. Balakrishnan and Kundu [6] studied hybrid
censoring methods and their applications. Singh and Tripathi [12] proposed Bayesian
estimation and prediction methods for a hybrid censored lognormal distribution.

On the basis of the findings in this study, we would like to recommend potential pa-
rameter estimation methods other than the gradient methods for practitioners to obtain
reliable MLEs of the GHN distribution parameters from hybrid censoring samples. The
quasi-Newton method is a popular gradient method in reliability applications to search
the MLEs of the model parameters from censoring samples. However, the quasi-Newton
method often fails to obtain reliable MLEs of the model parameters if the target function
is complicated. Complicated censoring schemes are useful for users to save test time, but
such schemes often bring a complicated target function and then make the quasi-Newton
method fail to obtain reliable estimates of the model parameters to optimize the target
function.

Because the likelihood function based on the hybrid type I censoring samples is very
complicated, it is difficult to obtain reliable MLEs of the distribution parameters. In this
paper, we would like to study the performance of using the methods of DE and GA to
obtain the MLEs of the GHN distribution parameters. Other soft computing methods, for
example, the particle swarm optimization method, could also have potential to improve
the estimation performance of gradient methods. However, the DE and GA methods have
been well studied and many free packages are available for users to implement the DE and
GA methods. Hence, the DE and GA methods are considered in this study for obtaining
the MLEs of the GHN distribution parameters.

The rest of this paper is organized as follows. The GHN distribution will be addressed
and reviewed in Section 2. Moreover, the DE and GA methods will be reviewed in
Section 2. In Section 3, intensive Monte Carlo simulations are conducted to evaluate the
performance of the DE and GA methods to obtain the MLEs of the GHN distribution
parameters. Finally, some conclusions are given in Section 4.

2. Statistical Model and Parameter Estimation Methods. Let X denote the life-
time of product that follows the GHN. The probability density function (pdf) of GHN
can be presented by

f(x; α, β) =
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, x > 0, α > 0, β > 0, (1)

where α is shape parameter and β is scale parameter (see [13]). Implementing re-
parameterization for the pdf in Equation (1) through using θ = β−2α, we obtain
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The cumulative density function based on Equation (2) can be obtained as
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, x > 0, α > 0, θ > 0, (3)
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where Φ(z) =
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normal distribution. The survival function of the GHN can be obtained by
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The hybrid type I censoring sample consists of the order statistics X1:n ≤ X2:n ≤ · · · ≤
Xa:n where a = r if Xr:n < T and a = m if m < r and X(m+1):n > T . We can obtain the
likelihood function for the hybrid type I censoring sample by

L(α, θ) =
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In particular, we can present the log-likelihood function based on the L(α, θ) in Equation
(5) by

ℓ(α, θ) ∝ a ln α +
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The MLEs of α and θ, denoted by α̂ and θ̂, are the solutions of the following two likelihood
equations:
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It is very difficult to obtain α̂ and θ̂ by simultaneously solving Equations (7) and (8)
through using gradient computation methods, for example, the quasi-Newton method,
see [14]. The soft computing methods of DE and GA are hence employed in this study to

search α̂ and θ̂ to maximize the L(α, θ) in Equation (5). The GA was firstly studied by
Holland in 1975, see [15]. The GA is an evolutionary algorithm, which uses the technique
inspired by natural evolution to generate solutions to optimize the target function. The
DE is another potential heuristic method to improve the estimation performance of the
quasi-Newton method. DE also uses evolutionary computation algorithm to optimize
the target function through iteratively trying to improve a candidate solution utilizing
a specific measure of quality. The DE method uses actual real number, and the ideas
of mutation and crossover in DE are substantially different from that in the GA. The
mutation and crossover operations in the DE method create a new vector through using
the difference between two or more vectors in the population such that the DE could have
higher opportunities to reach optimal solutions than the GA method in many instances.
Both GA and DE do not use gradient function to search optimal solutions. Some recent
studies regarding using GA and DE methods for optimization can be found in [16-20].

The principal of GA (see [18]) is briefly given as follows.

1) Choose an initial population.
2) Determine the fitness of each individual.
3) Perform selection.
4) Perform crossover and mutation.
5) Determine the fitness of each individual.
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6) Perform selection.
7) Repeat the above processes until reaching a termination condition.

Common termination condition(s) can be one of the following conditions, or combinations
of them.

1) Reach a solution to meet the specific criteria.
2) Reach a fixed number of iterations.
3) Reach the allocated budget.
4) Reach the highest ranking solution’s fitness, or cannot improve the solutions by

successive iterations.

The principal of DE (see [20]) is briefly given as follows.

1) Choose an initial population.
2) Determine the fitness of each individual.
3) Perform mutation.
4) Perform recombination.
5) Perform selection.
6) Determine the fitness of each individual.
7) Repeat the above process until reaching a termination condition.

Common termination condition(s) can be one of the following conditions, or combinations
of them.

1) Reach a solution to meet the specific criteria.
2) Reach the fixed number of iterations.
3) Reach the allocated budget.
4) Reach the highest ranking solution’s fitness, or cannot improve the solutions by

successive iterations.

3. Simulations. For implementing the GA method, we consider the parameters of pop-
ulation size PS = 100, crossover probability CP = 0.7 and 0.8, mutation probability MP
= 0.1 and 0.15 and maximum number of iterations MI = 100 to search the MLEs α̂ and θ̂
to maximize the target function in Equation (5). The parameters of crossover probability
CP = 0.5, weighting factor WF = 0.6 and 0.8 and the maximum number of iterations MI
= 150 are used to implement the DE method for searching the MLEs α̂ and θ̂ to maximize
the target function in Equation (5). The GHN parameters are set up as that in Table 1,
where we consider T as the 75th percentile of the GHN(α, θ).

Table 1. The selected parameters of GHN(α, θ) and T for simulations

α β θ T
1 2 0.2500 2.3006
1 3 0.1111 3.4510
1 4 0.0625 4.6014
2 2 0.0625 2.1451
2 3 0.0123 3.2176
2 4 0.0039 4.2902

Based on F (x; α, θ) = 2Φ
(√

θxα
)
−1 in Equation (3), the pth quantile can be obtained

through using the equation of xp =
[
Φ−1
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)
/
√

θ
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for 0 < p < 1. Hence, we

can generate random variables of GHN from the
(
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2

)
th quantile of standard normal

distribution. Algorithm 1 can be used to generate a hybrid type I censoring sample.
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Algorithm 1: Generating hybrid type I samples

Step 1: Given the values of α, β, θ, n, r and T .
Step 2: Generate r order statistics from GHN(α, θ) and denote them by x1:n, x2:n, . . .,

xr:n.
Step 3: If xr:n < T , the hybrid type I censoring sample is x1:n, x2:n, . . . , xr:n; otherwise,

the hybrid type I censoring sample can be x1:n, x2:n, . . . , xm:n, where xm:n is the
number to satisfy the conditions xm+1:n > T and m < r.

The bias and mean squared error (MSE) of an estimator, through using N generated
hybrid type I censoring samples, can be evaluated through using Algorithm 2, where N
is a big positive integer.

Algorithm 2: Evaluating the bias and MSEs of estimators

Step 1: Implement Algorithm 1 N times and denote the obtained hybrid type I cen-
soring samples by Y1, Y2, . . . , YN .

Step 2: For Yi, search the estimates to maximum L(α, θ|Yi) in Equation (5) through

using the DE method and denote the obtained estimates by α̂D,i and θ̂D,i for i =
1, 2, . . . , N .

Step 3: For Yi, search the estimates to maximum L(α, θ|Yi) in Equation (5) via using

the GA method. Denote the obtained MLEs by α̂G,i and θ̂G,i for i = 1, 2, . . . , N .
Step 4: The bias can be evaluated by Bias (α̂j) = ¯̂αj − α for j = D and G, where ¯̂αj

is the sample mean from estimates of α̂j,i for i = 1, 2, . . . , N , and by Bias
(
θ̂j

)
=

¯̂
θj − θ for j = D and G, where

¯̂
θj is the sample mean from estimates of θ̂j,i for

i = 1, 2, . . . , N . The MSEs can be evaluated by MSE(α̂j) = 1
N

∑N
i=1 (α̂j,i − α)2 for

j = D and G, and by MSE
(
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)
= 1
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(
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for j = D and G.

First, we would like to search better parameters for implementing the GA and DE
methods. In this study, we consider n = 50, r = n/2, N = 2000 and all simulation results
are reported in Table 2 and Table 3. From Table 2 we find that the designs of (CP, MP)
= (0.7, 0.1), (0.7, 0.15), (0.8, 0.1) and (0.8, 0.15) are competitive to implement the GA
method in terms of the bias and MSE. The combination of (CP, MP) = (0.7, 0.1) works
slightly better to obtain a reliable estimate of α, and the combination of (CP, MP) =
(0.7, 0.15) or (0.8, 0.15) works slightly better to obtain a reliable estimate of θ. From
Table 3 we find that the design of WF = 0.8 works better than that of WF = 0.6 to
implement the DE method in terms of the bias and MSE. Hence, we select the designs
of (PS, CP, MP, MI) = (100, 0.7, 0.10, 100), (100, 0.7, 0.15, 100) and (100, 0.8, 0.15,
100) to implement the GA method and select the design of (PS, CP, WF, MI) = (100,
0.5, 0.8, 150) to implement the DE method. These four designs of GA and DE methods
are used to search the MLEs of the GHN parameters. Two thousand simulation runs are
used for the parallel comparison of estimation performance when α = 2, and β = 3 (or
θ = 0.0123). Because the patterns of the simulation results of (PS, CP, MP, MI) = (100,
0.7, 0.15, 100) and (100, 0.8, 0.15, 100) are similar, this study only reports the results of
(PS, CP, MP, MI) = (100, 0.7, 0.10, 100) and (100, 0.7, 0.15, 100) for the GA method
and the simulation results of (PS, CP, WF, MI) = (100, 0.5, 0.8, 150) for the DE method
to save pages. All simulation results are displayed in Figure 1 and Figure 2.

From Figures 1 and 2 we can find that the DE method performs more reliable than the
two GA methods with smaller bias and MSE. In particular, Figure 2 shows that the GA
method has a higher probability to overestimate θ with wider dispersion compared with
that based on the DE method. Based on all simulation results, we recommend using the
DE method to obtain reliable MLEs of the GHN parameters.
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Table 2. The bias and MSE (in parentheses) of the GA based MLEs with
PS = 100 and MI = 100

α β θ T CP MP α̂G θ̂G

1 2 0.2500 2.3006 0.7 0.1 0.0727 (0.0548) 0.0253 (0.0121)

1 2 0.2500 2.3006 0.7 0.15 0.0793 (0.0600) 0.0260 (0.0128)

1 2 0.2500 2.3006 0.8 0.1 0.0778 (0.0530) 0.0260 (0.0134)

1 2 0.2500 2.3006 0.8 0.15 0.0748 (0.0557) 0.0255 (0.0130)

1 3 0.1111 3.4510 0.7 0.1 0.0234 (0.0391) 0.0189 (0.0028)

1 3 0.1111 3.4510 0.7 0.15 0.0403 (0.0438) 0.0157 (0.0027)

1 3 0.1111 3.4510 0.8 0.1 0.0286 (0.0432) 0.0203 (0.0031)

1 3 0.1111 3.4510 0.8 0.15 0.0434 (0.0459) 0.0157 (0.0028)

1 4 0.0625 4.6014 0.7 0.1 −0.0532 (0.0352) 0.0278 (0.0020)

1 4 0.0625 4.6014 0.7 0.15 −0.0390 (0.0354) 0.0211 (0.0015)

1 4 0.0625 4.6014 0.8 0.1 −0.0502 (0.0422) 0.0287 (0.0026)

1 4 0.0625 4.6014 0.8 0.15 −0.0179 (0.0408) 0.0219 (0.0018)

2 2 0.0625 2.1451 0.7 0.1 −0.0550 (0.1301) 0.0217 (0.0015)

2 2 0.0625 2.1451 0.7 0.15 −0.0248 (0.1309) 0.0170 (0.0012)

2 2 0.0625 2.1451 0.8 0.1 −0.0455 (0.1340) 0.0215 (0.0015)

2 2 0.0625 2.1451 0.8 0.15 0.0119 (0.1457) 0.0149 (0.0012)

2 3 0.0123 3.2176 0.7 0.1 −0.6042 (0.4398) 0.0438 (0.0028)

2 3 0.0123 3.2176 0.7 0.15 −0.5268 (0.3494) 0.0339 (0.0017)

2 3 0.0123 3.2176 0.8 0.1 −0.5868 (0.4259) 0.0435 (0.0029)

2 3 0.0123 3.2176 0.8 0.15 −0.5157 (0.3486) 0.0355 (0.0021)

2 4 0.0039 4.2902 0.7 0.1 −0.9023 (0.8603) 0.0506 (0.0036)

2 4 0.0039 4.2902 0.7 0.15 −0.8493 (0.7691) 0.0428 (0.0027)

2 4 0.0039 4.2902 0.8 0.1 −0.9054 (0.8743) 0.0557 (0.0050)

2 4 0.0039 4.2902 0.8 0.15 −0.8649 (0.8094) 0.0491 (0.0039)

Table 3. The bias and MSE (in parentheses) of the DE based MLEs with
PS = 100, CP = 0.5, and MI = 150

α β θ T WF α̂D θ̂D

1 2 0.2500 2.3006 0.6 0.0915 (0.0597) 0.0240 (0.0220)

1 2 0.2500 2.3006 0.8 0.0748 (0.0535) 0.0223 (0.0115)

1 3 0.1111 3.4510 0.6 0.0729 (0.0547) 0.0047 (0.0026)

1 3 0.1111 3.4510 0.8 0.0849 (0.0570) 0.0049 (0.0026)

1 4 0.0625 4.6014 0.6 0.0894 (0.0563) 0.0009 (0.0010)

1 4 0.0625 4.6014 0.8 0.0767 (0.0552) 0.0030 (0.0012)

2 2 0.0625 2.1451 0.6 0.1562 (0.2139) 0.0019 (0.0010)

2 2 0.0625 2.1451 0.8 0.1565 (0.2195) 0.0024 (0.0011)

2 3 0.0123 3.2176 0.6 −0.0088 (0.0650) 0.0030 (0.0001)

2 3 0.0123 3.2176 0.8 −0.0044 (0.0633) 0.0028 (0.0001)

2 4 0.0039 4.2902 0.6 −0.3372 (0.1295) 0.0065 (< 0.0001)

2 4 0.0039 4.2902 0.8 −0.3348 (0.1284) 0.0065 (< 0.0001)
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Figure 1. Two thousand MLEs of α by using the DE (top), GA (CP =
0.7, MP = 0.1; middle), and GA (CP = 0.7, MP = 0.15; bottom) methods

Figure 2. Two thousand MLEs of θ by using the DE (top), GA (CP =
0.7, MP = 0.1; middle), and GA (CP = 0.7, MP = 0.15; bottom) methods
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4. Conclusions. In this paper, we evaluate the performance of using the DE and GA
methods to search the MSE of the GHN parameters based on hybrid type I censoring
samples. An intensive simulation study is conducted for parallel comparisons. In the first
step of simulation, we did a small simulation study to identify better parameter designs
for using the DE and GA methods based on the hybrid type I censoring samples from the
GHN distribution. Then, we compare the performance of DE and GA methods in terms
of the spread, bias and MSE from 2000 obtained DE and GA based MLEs, respectively.
We found that the DE method performs better than the two GA methods with smaller
bias and MSE. Overall, we conclude that the DE method performs better than the GA
method in obtaining reliable MLES of the GHN parameters.

Soft computation algorithms other than the DE and GA could have potential to obtain
reliable MLEs of the GHN distribution parameters or other lifetime distribution parame-
ters from hybrid-censoring life tests. Studying the performance of other soft computation
methods on searching reliable MLEs of the model parameters from a broad of lifetime
distributions with different censoring schemes is interesting. We will study such issue in
the future.
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