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Abstract. This study considers a system that consists of multiple deteriorating and
replaceable components, and assumes that all of them are replaced in a preventive main-
tenance mode. A modular replacement unit is considered rather than replacing individ-
ual component independently; where any component in a module needs to be replaced,
the whole module is replaced all together. Small modules are economic, but degrade
availability of the system due to frequent maintenance stops. Large modules are expen-
sive, but enhance availability by reducing maintenance frequency. This study proposes a
linear-integer programming model to find the optimal modules that minimize the long-run
average cost under a target availability. It explores a solution under flexible decomposi-
tion structures which has never been allowed in the previous studies.
Keywords: Replacement module, Preventive maintenance, System availability, Transi-
tion matrix

1. Introduction. A system with deteriorating components periodically replaces those
components with new ones. This study considers a system that consists of multiple
deteriorating and replaceable components, and assumes that all of them are replaced
in a preventive maintenance mode. In other words, maintenance personnel replace a
component before it really fails. Where this replacement is far earlier than the expected
life time, a chance of actual failure is negligible. Such maintenance practice is common
in mission-critical systems like industrial equipment and jet engines. Whereas a system
can regularly inspect the components and replace them on a certain condition [1,2], this
study assumes that they are placed only by a planned replacement interval [3]. A system
owner strongly requires her system available for most of the time.

This study formulates a problem of decomposing replacement modules in this system.
A replacement module (or simply a module) is referred to as a collection of components
that can be detached, replaced and reassembled as a whole. A straightforward and the
cheapest way of maintenance is to replace every single component independently. In this
way, however, the replacement job requires much time for disassembly and reassembly
of a small component. Moreover, the system has to frequently shut down where many
components alternately require replacement operations. It does not satisfy a system
owner who strongly wants high availability. Another extreme solution is to renew a whole
system whenever any component requires replacement. It is trivially impractical because
of the cost, though it does minimize loss of the availability. Between these two extremes,
modular replacement can effectively compromise the availability and cost objectives. It
can avoid frequent maintenance operations while keeping the cost at a moderate level.
For this reason, modular architecture is known as a key strategy for achieving better
serviceability and reliability [4]. In order to fully exploit this benefit, a system has to be
decomposed into appropriate modules, which is a challenging task for design engineers [5].
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This paper proposes a deterministic optimization model to balance the tradeoff between
maintenance cost and system availability.

An issue of modular decomposition can be found in the engineering design literature.
They mainly concern how to maximize interactions among components within a mod-
ule while minimizing between-module interactions [6]. Maintenance oriented modular
decomposition problem has rarely been discussed in this literature.

In the system reliability literature, it is basically a maintenance problem of a multi-
component system. This problem has been widely studied in the reliability literature.
Two comprehensive reviews can be found in Cho and Parlar [7] and Wang [8]. According
to their common classifications, the module replacement is a kind of opportunistic main-
tenance. Replacement of a certain component yields an opportunity of replacing other
components with a marginal cost. For this kind of maintenance, threshold-based policies
have been suggested; whenever a component needs to be replaced for a preventive or
corrective purpose, other components that have aged more than a predefined threshold
are replaced together [7,8]. A common fixed threshold for all components [9] or variable
thresholds for different components [10,11] has been proposed.

Another stream of reliability studies adopts the modular concept for multi-level redun-
dancy allocation. Yun and Kim [12] formulated a problem of maximizing availability of
a system by allocating redundant modules for occasional failures rather than redundant
components. Yun et al. [13] extended this problem by allowing variable hierarchy levels
of different modules. It also explores an optimal module levels for allocating redundancy.
A series of following studies [5,14-16] proposed various meta-heuristic methods to solve
this problem, and Chung [17] and Han et al. [18] alternatively formulated a problem of
minimizing life-cycle cost under target availability. As far as the author studied, all those
studies assume a single hierarchical structure and determine module levels in this fixed
hierarchy.

This study contributes to the literature by two folds. It first expands the solution
space of the problem by allowing flexible decomposition structures. Specifically, this
study accommodates multiple choices of decomposition hierarchies and considers it as a
decision variable rather than a constraint. It is possible to group components with similar
replacement intervals together as a module in this expanded space.

Second, this study enables instant evaluation of the cost and availability measures by
deriving their closed-form functions. The previous studies evaluated those performance
metrics through simulation of maintenance schedules. Long simulation time hinders to
find an optimal decomposition solution in our expanded solution space. The closed-form
functions, however, enable to efficient exploration of solutions.

This study is organized as follows. Variables, parameters and constraint and objective
functions are mathematically formulated and the final linear-integer programming model
is presented in Section 2. This model is applied to a numerical example in Section 3, and
the conclusions are made in Section 4.

2. Problem Statement. This study assumes mission-critical systems like jet engines
that have to seldom fail due to component failure. In addition, the system is assumed
a series system; fail of any component makes the whole system fail. In order to satisfy
this requirement, every component must be preventively replaced whenever it reaches a
predefined age, which is far shorter than the expected lifetime. Under this assumption,
maintenance schedule becomes pretty deterministic ignoring possibility of corrective main-
tenance, by which a component is replaced after failure. Instead, frequent maintenance
may degrade availability of the system. The system has to shut down during maintenance
of any component because it is assumed as a series system. Maintenance time is deter-
mined by setup, disassembly, replacement and reassembly times, and no waiting time due
to lack of inventory is involved.
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2.1. Decision variables and parameters. The objective of the problem is to minimize
long-run average maintenance cost while meeting a target availability, which is defined by
fraction of operating time over total time of operating and maintenance. A decomposition
solution is represented by binary variables xi’s, each of which is 1 if a module i is selected
as a replacement unit and 0 otherwise. A module can be a single component, a group of
components or a whole system. A set of possible modules with size m is preliminary given
based on structural analysis on the system. A feasible decomposition should include all
components in any one of modules without duplication.

For module i, replacement cost, maintenance interval (usage life) and maintenance time
for replacement are denoted by Ci, Li and Mi, respectively. For Ci’s, a module is more
expensive than all its constituting components. If a module is a replacement unit, its Li

has to follow the most frequent interval among the constituting components.
Maintenance time Mi’s are obtained by an optimal selective disassembly and reassembly

time. This study assumes a flexible disassembly and reassembly structure. Possible
disassembly operations are constrained rather than a rigid disassembly sequence, adopting
a transition matrix. It represents disassembly operations, among the possible modules
(including a whole system and individual components) by a transition vector of which
values are −1 and 1 for an original module and disassembled modules, respectively. Other
elements are all 0. Thus, the matrix rows and columns correspond to possible modules
and disassembly operations, respectively. Table 1 illustrates a well-known example of a
transition matrix, which is called AFI (assembly from industry) in [19]. Lambert [19,20]
presented mathematical formulation of feasible disassembly sequences using this matrix.

Table 1. Transition matrix of AFI

i Feasible modules 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 ABCDEFGHJKL 1 −1 −1 0 0 0 0 0 0 0 0 0 0 0
2 ABCDEGHJKL 0 0 1 −1 −1 0 0 0 0 0 0 0 0 0
3 ABCDGHJKL 0 0 0 0 1 −1 −1 0 0 0 0 0 0 0
4 ABCGHJKL 0 0 0 0 0 0 1 −1 −1 0 0 0 0 0
5 AGHJKL 0 0 0 0 0 0 0 0 1 −1 0 0 0 0
6 ABCDEF 0 1 0 0 0 0 0 0 0 0 −1 0 0 0
7 ABCDE 0 0 0 1 0 0 0 0 0 0 1 −1 0 0
8 ABCD 0 0 0 0 0 1 0 0 0 0 0 1 −1 0
9 ABC 0 0 0 0 0 0 0 1 0 0 0 0 1 −1
10 A 0 0 0 0 0 0 0 0 0 1 0 0 0 1
11 B 0 0 0 0 0 0 0 0 1 0 0 0 0 1
12 C 0 0 0 0 0 0 0 0 1 0 0 0 0 1
13 D 0 0 0 0 0 0 1 0 0 0 0 0 1 0
14 E 0 0 0 0 1 0 0 0 0 0 0 1 0 0
15 F 0 0 1 0 0 0 0 0 0 0 1 0 0 0
16 G 0 1 0 1 0 1 0 1 0 1 0 0 0 0
17 H 0 1 0 1 0 1 0 1 0 1 0 0 0 0
18 J 0 1 0 1 0 1 0 1 0 1 0 0 0 0
19 K 0 1 0 1 0 1 0 1 0 1 0 0 0 0
20 L 0 1 0 1 0 1 0 1 0 1 0 0 0 0
Transition time (tj) 5 5 4 5 5 5 2 5 3 5 1 5 3 3

In this study, maintenance time Mi is defined by Mi = z∗(i) where z∗(i) is the optimal
value of following problem DP(i):

Min
uj∈{0,1}

z(i) =
n∑

j=1

tj · uj (1)
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s.t.
n∑

j=1

Tkjuj ≥ 0, ∀k ̸= i (2)

n∑
j=1

Tijuj = 1 (3)

where tj, which is listed in the last row of Table 1, is time for performing disassembly
and reassembly transition j and Tkj is an element of the transition matrix T for row
i and column j. T is an m × n matrix. The positive value of t1 is a constant setup
and replacement time charged for any module, since u1 is always 1 in feasible solutions.
The objective function (1) minimizes time of all transitions. The transitions satisfying
inequality (2) guarantee their feasibility since no module can appear without disassembling
a bigger module. By Equation (3), target module i is selectively obtained without further
disassembly.

2.2. Cost and availability during system maintenance cycle. This study adopts
common definitions for maintenance cost and availability in reliability theory [3]. In this
field, maintenance cost is often defined by cost per time unit, availability is defined as
fraction of time for which a system operates (uptime) over total time. This study computes
time-averaged cost and availability over system maintenance cycle τ , after which the whole
system is renewed with new modules and the same maintenance schedule is repeated.

A module maintenance cycle is simply Li + Mi. In a system level, however, it is not as
simple as a module. In Figure 1, let τ be the system maintenance cycle of an l-module
system. Without loss of generality, the modules are indexed form 1 to l in an order of
increasing Li. By the assumption of a series system, all modules stop during any module
is replaced (the shaded intervals). Thus, a later module’s replacement point is delayed by
prior modules’ maintenance. Where ai is the number of replacements of module i before
module l’s first maintenance, it actually occurs at Ll +

∑l−1
i=1 aiMi, as shown in Figure 1.

Figure 1. System maintenance cycle

Fortunately, such complicated schedule is analytically derived, and the cycle time τ is
defined by a closed-form function following Proposition 2.1.

Proposition 2.1. Where Li and Mi are maintenance interval and maintenance time of
module i, respectively, system maintenance cycle τ and the number of times bi to replace
module i during τ satisfy the following equation where the system consists of l modules.

τ =
l∏

i=1

Li +
l∑

i=1

biMi, where bi =
∏
∀k ̸=i

Lk, ∀i. (4)
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The first and second terms of τ are total uptime and downtime, respectively.

Proof: For module i, if τ is a system cycle time, it repeats its own maintenance cycle
integer-multiple times. Let this number of maintenance cycles be bi. Since the module
also stops during other modules’ maintenance time bkMk for each k ̸= i, time τ should
be summation of its own cycles and this time. Therefore, there exist positive integers
b1, . . ., bl that satisfy the following equation.

bi(Li + Mi) +
∑
∀k ̸=i

bkMk = biLi +
l∑

k=1

bkMk = τ, ∀i. (5)

By equating (5) for all i’s, the equation b1L1 = b2L2 = · · · = blLl holds. It is also total
uptime of the system during the cycle τ . Such integer bi’s always exist where biLi is a
common multiple of Li’s. By substituting biLi in Equation (5) with a trivial common
multiple, which is the product of Li’s, Equation (4) is derived. �

The long-run average cost function TC(x) of x, which is a module decomposition vector
x = {x1, . . ., xm}, is derived from Equation (4). Because maintenance schedule repeats
for any integer multiple of a cycle time, a τ0 defined by Equation (6) is also a cycle time
where only l modules are selected for decomposition among m candidates.

τ0 =
m∏

i=1

Li +
m∑

i=1

(
m∏

k=1

Lk

/
Li

)
Mixi. (6)

It is equivalent to multiply Li’s, for which xi = 0, to Equation (4). Where module
placement cost is Ci, total cost during τ0 is the summation of biCi’s for i’s where xi = 1.
Then, TC(x) is

TC(x) =
m∑

i=1

(Ci/Li) xi

/
1 +

m∑
i=1

(Mi/Li)xi. (7)

Next, availability function A(x) is also derived from Equation (6), of which the first
and second terms are uptime and downtime of the system, respectively. Then, A(x) is

A(x) = 1

/
1 +

m∑
i=1

(Mi/Li)xi. (8)

2.3. Feasible module decomposition. For any solution x = {x1, . . ., xm}, it should
be a feasible decomposition; every component belongs to one and only one module. The
feasibility is guaranteed by constraining x with the former transition matrix T . By Lemma
2.1, x constrained by Equation (9) is a feasible decomposition.

Lemma 2.1. A solution x = {x1, . . ., xm} is a feasible decomposition if and only if there
exists a vector y = {y1, . . ., yn}, yj ∈ {0, 1} satisfying the following equation,

y1 = 1 and
n∑

j=1

Tijyj = xi, ∀i. (9)

Proof: It is proved by dividing if and only if cases.
i) only if: If x is a feasible decomposition, there exists an assembly sequence by which

the modules are assembled into the original system. Where a column vector T·j corre-
sponds to an operation assembling modules with value 1 into a module with value −1,
let yj be 1 if T·j consists of the assembly sequence, and 0 otherwise. Then, summation of
Tijyj’s is 1 for a leaf module i. On the other hand, the summation is 0 if module i is an
assembly of other modules because one yj element is 1 for Tij = −1. It is also zero for
nonparticipating ones.

ii) if: Suppose x and y satisfying Equation (9). Let R be a subset of {j| yj = 1} where
vi, which is summation of Tij’s for j ∈ R, be a feasible decomposition. A trivial R is {1}.
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Take i where xi = 0 and vi = 1. There exists k /∈ R such that yk = 1 and Tik = −1. By
expanding R = R∪{k}, vi becomes 0. The redefined vi’s are also a feasible decomposition
because each modules h where Thk = 1 is a disjoint subset of the components in module
i. Likewise, repeat expansion of R until there is no vi = 1 for i’s where xi = 0.

If the resulting vi’s are 1 for i’s where xi = 1, xi’s that equal vi’s respectively are also
feasible. Suppose any vi = 0. If R = {j| yj = 1}, it contradicts Equation (9). Otherwise,
if R′ = {j| yj = 1}\R is not empty, summation of T·j’s for R′ has at least one negative
element since R trivially contains y1. Then, some vi’s are decreased by expanding R to
R ∪ R′, and then, some vi’s are unequal to xi’s. This case also contradicts Equation (9).
�

2.4. Optimal modular decomposition model. The optimization model explores a
feasible modular decomposition x that minimizes the long-run average cost TC(x) while
assuring A(x) ≥ AT and satisfying Equation (9). The cost function TC(x) is nonlinear
while the other inequalities are linear. Fortunately, however, the optimization model can
formulate a linear objective function by Lemma 2.2.

Lemma 2.2. For two non-zero functions f and g with the same sign, if g(x) ≤ g(x′)
for any two vectors x and x′ satisfying f(x) ≥ f(x′), x∗ minimizing f(x) also minimizes
f(x)/g(x).

Proof: Suppose that there exist x′ such that f(x′)
g(x′)

< f(x∗)
g(x∗)

where x∗ minimizes f(x).

1 ≤ f(x′)

f(x∗)
<

g(x′)

g(x∗)
. (10)

By the condition, however, g(x′) ≤ g(x∗) should hold because f(x′) ≥ f(x∗). Since
Equation (10) contradicts this condition, such x′ never exists. �

By Lemma 2.2, where a more expensive decomposition may require less disassembly
and reassembly time. From these properties, the modular decomposition problem MP is
formulated as a linear-integer program as follows:

Min
xi∈{0,1},yj∈{0,1}

w =
m∑

i=1

Ci

Li

xi (11)

s.t.
m∑

i=1

Li

Mi

xi ≤
1

AT

− 1, (12)

xi −
n∑

j=1

Tijyj = 0, ∀i (13)

y1 = 1, (14)

where variable yj’s, which are also decision variables, are used only for guaranteeing
feasible decomposition without involving any cost.

3. Numerical Example. As a numerical example, recall the example of AFI in Table 1.
All DP(i)’s and MP are solved by CPLEX v12.6.2, and the optimal solutions are obtained
in a very short time, less than a second.

This system consists of 11 components, and total 20 modules are candidates for re-
placement units. For each module i, parameter Ci, Li and Mi values are listed in Table
2. Let Ci’s be in thousand dollars, and Li’s and Mi’s be hours. Mi’s are derived from the
optimal solutions of DP(i)’s. This analysis applied two different Li value sets: L1

i and
L2

i , where L1
i has diverse operating life time, and L2

i has common life time, which is the
average of L1

i values. The diversity of life time may affect the solution.
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Table 2. Parameter values of AFI

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Ci 65 55 45 37 24 41 36 24 15 3 3 5 4 4 3 1 2 4 2 4
Li 500 500 500 500 500 500 500 600 600 600 700 900 600 500 900 800 500 600 700 500
Mi 5 9 14 16 19 10 11 16 19 22 19 19 16 14 9 10 10 10 10 10

Table 3. Optimal decompositions

Target Availability Optimal Decomposition Total Cost in $/hour Attained Availability
AT x TC(x) A(x)

81% A/B/C/D/E/F/G/H/J/K/L (11 modules) 55.62 81.10%
84% ABC/D/E/F/G/H/J/K/L (9 modules) 65.77 84.76%
87% ABCD/E/F/G/H/J/K/L (8 modules) 74.11 97.10%
90% ABCGHJKL/D/E/F (4 modules) 92.00 91.19%
93% ABCDGHJKL/E/F (3 modules) 101.33 93.81%
96% ABCDEGHJKL/F (2 modules) 113.33 97.28%
99% ABCDEFGHJKL (1 module) 130.00 99.01%

The problem MP is solved for these values varying the target availability values from
81% to 99% by 3%. Table 3 shows the optimal solutions. The smallest cost ($55.62/hour)
but lowest availability (81.10%) is attained by decomposing the system into individual
components, and the largest cost ($130.00/hour) but highest availability (99.01%) is at-
tained by replacing the system as a whole. Component F (i = 15) remains as an inde-
pendent module until the system is decomposed into only two modules. It is because its
maintenance interval is much longer than other components while its replacement requires
the least time among all modules except the whole system.

4. Conclusions. In this study, a linear-integer programming model for minimizing the
long-run average maintenance cost of modular-replaceable systems while achieving a given
availability is proposed. The replacement modules take a trade-off between the cost and
availability. Smaller modules achieve lower costs, but lose availability because of the
frequent maintenance stops. Vice versa, larger modules achieve higher availability while
spending more cost for replacing all the components that still remain life. In this sense, the
optimal decomposition may group the components having similar maintenance intervals.
It is a combinatorial problem to explore such groups under a constrained disassembly
structure.

The proposed model formulates those objectives and constraints in linear and closed-
form functions, and solve it as an ordinary integer-programming problem. Because the
existing studies simulated maintenance schedules for deriving the system availability and
the long-run average cost, a special algorithm was needed to solve this problem, and the
simulation time became a hurdle to solve it efficiently. The closed-form functions resolve
this trouble. In addition, a transition matrix, which is usually utilized for exploring
assembly or disassembly sequences, is first introduced for guaranteeing physically feasible
decomposition of replacement modules. These improvements make the problem much
more tractable.

This model could be further extended to stochastic problems involving random failure
and corrective maintenance. Since module composition changes failure rates, a more
complicated model is needed for taking account of the random nature.
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