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Abstract. In the high-speed interior permanent magnet synchronous motor (IPMSM)
vector control system, the robustness of the system is always decreased due to the problems
which exist in the current decoupling process. It is caused by those factors: the speed-
dependent cross-coupling terms due to coordinate transformation, the presence of control
response delays in digital systems, and the sensitivity of parameter changes for traditional
decoupling strategies. In this paper, based on the discrete model of motor, the direct design
method is proposed to design the decoupling controller with discrete sliding mode current
compensation, which not only ensures the decoupling performance of the system, but also
increases the adaptability to the motor parameters. Simulation and experimental results
demonstrate the effectiveness of the proposed approach.
Keywords: High-speed interior permanent magnet synchronous motor, Direct design
method, Current loop decoupling, Discrete mathematical model, Sliding mode current
compensation control

1. Introduction. Because of the high efficiency and high inertia ratio characteristics,
IPMSM is widely used in electric vehicles, heavy industrial machinery and other indus-
trial occasions [1]. High-speed IPMSM gets more attention because of its smaller, lighter
weight, higher power density. However, the maximum fundamental frequency makes the
control more difficult. On the one hand, the transformation of electric variables to a
synchronous reference frame creates cross-coupling that is proportional to the maximum
fundamental frequency. As a result, the performance of the current regulator has been
shown to degrade as the maximum fundamental frequency increases [2]. On the other
hand, the use of pulse width modulation (PWM) to control the inverter forces additional
delays between the sampling of signals and the application of the control response will
complicate the controller design and decrease the system’s overall stability [3]. Thirdly,
discretization of the current controllers designed in the continuous-time domain degrades
the robustness of the closed-loop system because of errors introduced by discretization
method approximation [4]. In order to solve the problem, voltage feed forward decou-
pling, state feedback decoupling, internal model control and other methods are adopted.
However, they all are first designed in the continuous-time domain and then discretized
for the digital implementation using [5]. This approach is well understood and works
well in most applications. However, the ratio between the sampling frequency and the
maximum fundamental frequency should be more than 10 [4].

A. Altomare et al. established a discrete model of three-phase inverter-driven perma-
nent magnet synchronous motor with delay in the discrete domain, and proposed a new
type of direct discrete current controller which uses the zero-pole cancellation method in
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[6], and it solves the problem of current coupling caused by digital control and time delay.
The system performance is ideal when no parameter changes and external disturbances
occur. However, the inductances Ld and Lq are nonlinear functions of both current com-
ponents id and iq [7]. If the parameters change, it will lead to the system closed-loop
zero-pole cannot be cancelled well, and the damping factor will be deteriorated at the
same time.

M. Comanescu et al. proposed a new approach for decoupled current control in [8]. The
cross-coupling terms of the d-q current dynamics were treated as unknown disturbances.
Integral-sliding-mode (ISM) controllers are used to reject these disturbances. However, as
the speed increases, the proportion of the coupling voltage is increasing, and it will require
high-gain to make the system stable. However, the high-gain will lead the output voltage
to becoming high frequency switch which will bring high frequency noise and buffeting.

A discrete sliding mode current compensation controller is proposed in this paper which
is based on the accurate discrete mathematical model of the motor. This control strategy
uses the direct discrete controller to decouple the ideal motor model, and uses the dis-
crete sliding mode control to improve the system robustness for the parameter variations
and external disturbances in the whole process of motion. Simulation and experimental
results are provided to compare the performance, stability, and robustness of the current
regulators analyzed.

2. Discrete Mathematical Model of High-Speed Permanent Magnet Motor.
When the IPMSM is running at the high-speed range, the resistive voltage drop can be
ignored. The IPMSM model in the α-β stationary reference frame can be described by
the following voltage equation:

uαβ =
dψαβ

dt
(1)

where uαβ are the αβ stator voltage; ψαβ is the stator flux.
In the α-β stationary reference frame, the transfer function of (1) can be expressed as:

Gp(s) =
ψαβ(s)

uαβ(s)
=

1

s
(2)

Ignore the harmonic, the inverter can be treated as an ideal zero-order hold:

H(s) =
1 − e−sTs

s
(3)

where Ts is the sampling period; s is continuous domain.
Based on the discrete control theory, the control object and the zero-order hold are

regarded as a generalized control object and then can be discretized. The discrete model
of IPMSM is shown in Equation (4), which is driven by the three-phase inverter in the
stationary coordinate system of (2) and (3).

Gαβ(z) =
ψαβ(z)

uαβ(z)
= Z{H(s)Gp(s)} =

Ts

z − 1
(4)

Since the PWM duty cycle command is calculated at the k sampling period, and it
is usually executed at k + 1 sampling period, the digital control system usually has the
one-ample period delay. The delay function is:

D(z) =
(
zejωeTs

)−1
(5)

where ωe is the electrical angular speed; z is discrete domain.
Considering the digital delay, the exact discrete model of the three-phase inverter-driven

permanent magnet synchronous motor can be obtained by Equations (4) and (5):

Gdq d(z) =
Ts

zejωeTs (zejωeTs − 1)
(6)
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3. Design of Current Decoupling Controller. In this paper the main controller uses
a control strategy proposed by A. Altomare et al. in [6]. However, in the actual situation,
the control system will be affected by parameters such as parameter changes and exter-
nal disturbances. Therefore, a discrete sliding mode current compensation decoupling
controller is designed to overcome the shortcomings of the main controller, suppress the
interference and improve robustness of the system.

3.1. Discrete current decoupling controller of direct design method. Discretiza-
tion of the current controllers designed in the continuous-time domain degrades the ro-
bustness of the closed-loop system because of errors introduced by discretization method
approximation. So the direct design method is used to obtain the discrete current regu-
lator in the synchronous rotating coordinate system [6]:

Gc(z) =
udq

edq

=
k

(
zejωeTs

(
zejωeTs − 1

))
Ts(z − 1)

(7)

where edq = ψ∗
dq − ψdq is the flux error complex vector and k is the controller gain, whose

value determines the flux dynamics.
By using (6) and (7), the closed-loop discrete-time transfer function can be expressed:

Go(z) =
Gc(z)Gdq d(z)

1 +Gc(z)Gdq d(z)
=

k

z2 − z + k
(8)

The root locus of Go for positive k gains is reported in Figure 1. Closed-loop poles
obtained with k in (8) equal to 0, 0.25, 0.35, 1 are evidenced with position 1, 2, 3, 4
at Figure 1. The closed-loop poles are real with gains up to 0.25. A damping equal to
0.707 is reached with k = 0.35. Evidently, the root locus is not influenced by the motor
fundamental frequency. In the synchronous rotating coordinate, flux can be described as:

ψdq(z) = Ldid + ψf + jLqiq (9)

Substituting (9) in (7) gives the following transfer function:

udq(z) =
[
Ld (i∗d − id) + jLq

(
i∗q − iq

)] k (
zejωeTs

(
zejωeTs − 1

))
Ts(z − 1)

(10)

Figure 1. Pole-zero map of control system
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According to (10), the current regulator block diagram can be got as shown in Figure
2. Ideally, assuming that the motor parameters are accurate, the real current will be same

as the ideal current. At this time, the voltage and current can be defined as:
[
isd, i

s
q

]T
,[

us
d, u

s
q

]T
, the motor equation can be written as (11) in d- and q-axes reference frame, and

Figure 3 illustrates its structure.
us

dk = Rsi
s
dk + Ld

isdk+1 − isdk

Ts

− ωeLqi
s
qk

us
qk = Rsi

s
qk + Lq

isqk+1 − isqk

Ts

+ ωeLdi
s
dk + ωeψf

(11)

Figure 2. Discrete current regulator schematic based on direct design

Figure 3. Discrete current control system based on direct design

This is the equivalent current control law where the controller gains kd and kq have
to satisfy the relation k = kd/Lq = kq/Lq to guarantee the same dynamic behavior of
the current components. However, the inductances Ld and Lq are nonlinear functions of
both current components id and iq. If the parameters change, it will lead to the system
closed-loop zero-pole cannot be cancelled well, and will deteriorate the damping factor at
the same time. Meanwhile, the controller is also less resistant to interference, although
it can be increased by increasing the proportional gain, but it will cause the system to
oscillate in the dynamic process.

3.2. Discrete slide mode current compensation decoupling control. Consider the
parameter changes and external disturbances, the motor model can be equivalent to (12):

idk+1 = idk +
Ts

Ld

(Lqωeiqk + udk − hd(x, k))

iqk+1 = iqk +
Ts

Lq

(uqk − Ldωeidk − ψfωe − hq(x, k))
(12)

While {
hd(x, k) = ∆Ldidk − ∆Lqiqkωe + εd

hq(x, k) = ∆Lqiqk + ∆Ldidkωe + ∆ψfωe + εq

where hd(x, k) and hq(x, k) are the q- and d-axes disturbance; ∆Ld is d-axis offset; ∆Lq

is q-axis offset; ∆ψf is ψf offset; εd and εq are no equivalent of the modeling part.
Discrete sliding mode control (D-SMC) proposed in this paper is improved on the

original decoupling control strategy, in order to suppress parameter perturbation and
external disturbance. Because the sliding mode control does not have the robustness in
the approaching stage, the entire trajectory should be ensured on the sliding mode, so the
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Figure 4. SMC diagram of d-axis current

Figure 5. SMC control based on direct discrete current control

d-axes sliding surface and control law can be got. The d-axes control schematic is shown
in Figure 4. For the d-axes, the sliding surfaces are designed as

sdk = idk−zdk

zdk+1 − zdk

Ts

=
us

dk + ωeLqiqk

Ld

zd(0) = 0

(13)

sdk+1 − sdk = idk+1 − idk −
us

dk + ωeLqiqk

Ld

Ts (14)

The control law is designed as

udk = [−qsdk − εsgn(sdk)]Ld + us
dk (15)

where ε > 0, q > 0, 1 − qTs > 0 and Ts is the sampling period.
For the q-axes, the sliding surfaces are designed as

sqk = iqk − zqk

zqk+1 − zqk

Ts

=
us

qk − ωeLdidk − ωeψf

Lq

zq(0) = 0

(16)

The control law is designed as

uqk = [−qsqk − εsgn(sqk)]Lq + us
qk (17)

Overall, for each axis, the controller output has two components: one are us
dk and us

qk

and the other one are udk and uqk. The us
dk and us

qk are designed for ideal system. Figure
5 shows the current regulator proposed in this paper, which is obtained by combining a
direct discrete current regulator with a discrete sliding mode controller.

3.3. Proof of robustness. The switching function will be affected by the perturbation
of parameters, external disturbances and other factors. So according to Equation (12),
Equation (15) can be defined as following (18).

sdk+1 − sdk =
udk − us

dk − hdk

Ld

Ts (18)
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Select the Lyapunov function vk = s2
k/2, and the arrival conditions can be calculated

as s2
k+1 < s2

k. When the sampling time Ts is small, it can get 2 − qTs ≫ 0. The discrete
sliding mode existence and arrival conditions can be described by the following equations:

[sk+1 − sk]sgn(sk) < 0, [sk+1 + sk]sgn(sk) > 0

[sk+1 − sk]sgn(sk) =

[
−qTssk − εTssgn(sk) −

hdk

Ld

Ts

]
sgn(sk)

= − qTs|sk| −
hdk

Ld

Tssgn(sk) − εTs|sk|
(19)

[sk+1 + sk]sgn(sk) =

[
(2 − qTs)sk − εTssgn(sk) −

hdk

Ld

Ts

]
sgn(sk)

= (2 − qTs)|sk| −
hdk

Ld

Tssgn(Sk) − εTs|sk|
(20)

Equations (19) and (20) are established during εLd > |hd|. And the sliding mode of the
system is invariant for the parameter changes and the external disturbance. Thus, the
robustness of the system can be proved. It can be certificated that the system is robust
when the q-axis satisfies the inequality εLq > |hq|.

4. Simulation Analysis and Experimental Verification.

4.1. Simulation analysis. In order to verify the correctness of the proposed strategy,
the simulation and experimental verification are carried out. The IPMSM parameters
are shown in Table 1 which are measured in the ideal state. The system control block
diagram is shown in Figure 6.

The curves (a) and (b) are a simulation curve based on the control strategy proposed in
[8], and the target speed of curve (a) is 1500 r/min. The curves (c) and (d) are simulation
waveforms when using a discrete current regulator based on the direct design method,
and the curves (e) and (f) are simulation waveforms when using a current regulator based
on discrete sliding mode compensation control. In the simulation experiment, the target

Table 1. IPMSM parameters

Parameters Values
Rs 0.0126 Ω
Ld 280 µH
Lq 849 µH
ψf 0.116 Wb
Te 60 N·m

Rated speed 4500 rpm
Pole 4 ploes

Figure 6. Block diagram of system
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speed of IPMSM is 4000 r/min except the curve (a), and the initial load torque is 5
N·m. When t = 0.15 s, the load torque is stepped from 5 N·m to 15 N·m. The control
strategy shown in Figure 6 is used in Figure 7, and then the two control algorithms are
simulated under the exact and inaccurate parameters. The curves (c) and (e) are accurate

for parameter identification, and curves (d) and (f) are L̂dq = 1.3Ldq. Compared with the
curves (a) and (b), it can get a satisfactory decoupling effect on the low speed. However,
on the high speed, as the previous analysis, there appeared high frequency noise and
chattering phenomenon which will deteriorate the system’s performance. So this method
is not suitable for current decoupling control when in high speed. Compared with the
curves (c) and (d) and the curves (e) and (f), it can be seen that the speed response
and the decoupling effect of dq axis current are ideal for the same controller when the
parameters are accurate. The dynamic performance of the current regulator is becoming
worse when L̂dq = 1.3Ldq. If there is a sudden change in torque, the d-axis current also
fluctuates. Contrasting curves (c) and (e) and curves (d) and (f) it can be got. For
different controllers, when the parameter identification is accurate, the two control effects
are similar. However, when the parameter identification is not accurate, the control effect
proposed in this paper is much better than other control methods in the event of external
disturbance.

(a) (b) (c)

(d) (e) (f)

Figure 7. d/q axis current response for different discrete current regulators

4.2. Experimental verification. As shown in Figure 8, the motor test platform is
built which is identical for the simulation model. The platform mainly includes the
control module and the power module. The control module core control chip adopts
TI’s TMS320F28335. The power module includes FF600R07ME4 inverter and a series of
detection circuits.
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Figure 8. High-speed interior permanent magnet synchronous motor test bench

(1) (2) (1) (2)

(a) (b)

(1) (2) (1) (2)

(c) (d)

Figure 9. d/q axis current response for different current regulators

Figures 9(a) and 9(b) are the d- and q-axis current experimental waveforms for the
exact motor parameters of the two controllers when the torque is mutation. Figures 9(c)

and 9(d) are the d- and q-axis current experimental waveforms for the L̂dq = 1.3Ldq of
the two controllers when the torque is mutation, where (2) is a partial enlarged view of
(1). Compared with (a) and (b), it can be seen that both methods can achieve better
decoupling performance when parameters are accurate, and the second method is better
than the first method in dynamic response. Compared with (c) and (d), it can be seen
that when parameter is not accurate, the d- and q-axis of the first control method is
cross-coupled seriously, and the d-axis current changes obviously when the q-axis current
is mutation. The control method proposed in this paper can achieve ideal decoupling
performance of current and the dynamic adjustment time is shorter than that of the first
method. The system has strong robustness.

5. Conclusion. In this paper, a discrete sliding mode current compensation decoupling
control is proposed, and it solves the problem that the traditional current controller de-
coupling effect is not ideal when there exist parameter changes or external disturbance for
the system. According to the results of simulations and experiments, the proposed design
improves the dynamic performance and robustness, particularly at high speeds, compared
with the other methods. In addition, as we have seen, the current loop bandwidth is lim-
ited due to switching frequency and digital delay. In order to get the better performance
under high speed for the control system, it will focus on expanding the current loop
bandwidth in the future.
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