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Abstract. Biological data is currently being exponentially increasing and causing an
essential issue when meaningful information is required to be extracted from massive
DNA-protein databases. Various methods related to bioinformatics computations have
been used to extract, search, integrate, and analyze biological data in efficient ways.
In particular, the decision tree approach is one of the common approaches applied in
processing biological data. However, when dealing with massive datasets, the time needed
to build the decision tree will increase. Therefore, parallel computing is used to accelerate
the construction of the decision tree. This paper provides an overview and background
of the state of the art of Graphics Processing Unit (GPU) parallel computing approaches
and other parallel computing approaches that are being used to build a decision tree.
Keywords: Decision tree, Graphics Processing Unit (GPU), Bioinformatics, Parallel
computing, DNA-protein sequence databases, Data mining

1. Introduction. Biological experiments produce massive amounts of data from time
to time. As a result, the need to process this data by using computers has risen due to
their capabilities in dealing with such data compared to traditional methods. Therefore,
the field of bioinformatics, which is an interdisciplinary field that combines biology and
information technology, was established. One of the main objectives of this field is to
develop new software tools that can manage, integrate, and interpret information that
is derived from the biological data comprising sequence, microarray, genomic, proteomic,
metabolic, structural, the entire organism, image, phylogenetic, and cellular levels [1].

The biological data that are generated from massive biological experiments consists
of many types. The most basic type of the data is the primary sequence data. The
primary sequence data consists of three types, which are: the protein primary sequences,
the Ribonucleic Acid (RNA), and the Deoxyribonucleic Acids (DNA). Public biological
sequence databases are classified into three main groups, which comprise the databases
of DNA, proteins, and the specialized database, which are the outputs of processing and
organizing the DNA and the protein sequence data [2].

There are three major public databases for the DNA repository which share the same
format and are however maintained and located differently. The most common DNA
databases comprise the DNA Data Bank of Japan (DDBJ), the European Molecular
Biology Laboratory (EMBL), and the human genome initiative (GenBank) [3]. All these
databases share a common characteristic, which is being maintained and kept up-to-date
on a regular basis. There are other databases such as the Protein Information Resource
(PIR), the Protein Data Bank (PDB), and the Swiss-Prot.
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Figure 1. The exponential growth of the DDBJ, EMBL and GenBank
from 1999 to 2016 (Adapted from [5])

The amount of the biological data is increasing exponentially. An example of this
growth can be shown in Figure 1, which illustrates the growth of DDBJ, EMBL and
GenBank from 1999 to 2016. Therefore, the need for improving the algorithms that can
sort, search, and analyze this data became a must where this can be addressed via data
mining. Data mining can be defined as a method for uncovering useful information that
is concealed in massive databases. Over the past few years, data mining has been attract-
ing researchers to apply it in many different disciplines such as in marketing databases,
medicine, bioinformatics, and engineering [4].

One of the common techniques in data mining is the decision tree technique. A decision
tree builds a model as a tree-structure in order to highlight the effect of a decision. It
receives a dataset as an input, and breaks it down into smaller subsets, while an associated
decision tree is incrementally developed at the same time. It is used to simplify complex
problems, and to assess the cost-effectiveness of a research. Additionally, a decision tree
is used in diverse areas as an indexing approach such as in information retrieval [6], video
indexing [7], graph database [8,9], and index large DNA-protein sequence datasets [2].
The decision tree also has the ability to deal with large datasets where several previous
efforts attempted at using it in large data such as Supervised Learning In Quest (SLIQ)
[10], Scalable Parallelisable INduction of decision Tree (SPRINT) [11], and Classification
for Large or OUt-of-core Datasets (CLOUDS) [12].

When the decision tree deals with a huge dataset, the time that is needed to build
the tree is large. Therefore, parallel processing is used in order to assist in speeding
up the constructive process of the decision tree. Parallel processing is a computational
type in which many processors work simultaneously to process huge amounts of data.
It is applicable in many disciplines such as data visualization, computational biology,
engineering and weather forecasting [13].

Parallel processing can be classified into implicit and explicit parallelism. If the type
of the task part can be decided to run in parallel by the programming language, then it
is called implicit parallelism. If the programmer can, however, allow specific parts to run
in parallel, then it is called explicit parallelism. When dealing with a massive amount of
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data, then two mechanisms are likely to be applied, which comprise both of the function
decomposition and the data decomposition or one of them. Both data parallelisms are
combined by the hybrid parallelism with the function decomposition, and the vertical or
horizontal distribution [14].

One of the trends in parallel computing is the General-Purpose programming using a
Graphics Processing Unit (GPGPU), which is a technique that is used for programming
the chips of the Graphics Processing Unit (GPU) based on the use of the Application
Programming Interface (API) functions (e.g., the Compute Unified Device Architecture
(CUDA), the Direct3D, and the Open Graphics Library (OpenGL)) [15] in order to gain
the required results within a short time. The Graphics Processing Units (GPUs) are
considered to be streaming multiprocessors that are highly being threaded based on the
data throughput and based on extremely high computations [16]. Many applications
studied in the literature have been using the CUDA in many different fields such as in
biology, chemistry, data mining, astronomy, and physics [17].

Due to the significant role that parallel decision tree can play in manipulating huge
datasets, moreover, in order to recognize the new approaches for parallel decision tree
which as a result can guide the future of research in this field, this paper highlights
the way the researchers are applying the parallel decision tree algorithm on GPU for
manipulating biological datasets.

This paper is organized as follows. Section 2 presents some of the related techniques on
GPU used in decision trees. On the other hand, other parallel techniques are presented
in Section 3. Finally, the drawn conclusions of this paper are presented in Section 4.

2. Decision Tree and Related Techniques on GPU. This section explores the use
of the GPU for decision tree algorithms. The advantages, disadvantages, data decompo-
sition, and function decomposition are all highlighted in this section. Additionally, Table
1 summarizes the researches that are discussed in this section.

Table 1. A summary of some researches for the parallel decision tree on GPUs

Author(s) Year Parallelism
Disk-Resident/

Database-Resident
Dataset

Training Data/
Testing Set

Chiu et al. [21] 2011 Data Disk-Resident N/A N/A

Sharp [22] 2008 Data Disk-Resident

Labeled
object

recognition
database

100 training
example

Grahn et al. [23] 2011 Data Disk-Resident
EULA
dataset

10-fold
cross-validation

Nasridinov
et al. [24]

2013 Data Disk-Resident N/A N/A

Pilkington
and Zen [25]

2010 Function Disk-Resident N/A N/A

In parallel processing, many attempts have been made for forming a scaling process for
the decision tree through massive amounts of datasets. Jaber et al. discuss the parallel
decision tree used in genomic data, large datasets, and other fields [2,18-20].

Parallelization has become a widely known mechanism for speeding up the decision
tree tasks that manage the massive amounts of data. Nonetheless, there exist many
mechanisms which are likely to parallelize the decision trees. These comprise either data
and function decompositions or one of them. Data decomposition includes the vertical and
the horizontal distributions. In the horizontal distribution, the training data is divided
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evenly into many parts. This data is then assigned to each processor. The distinct data
is only assigned to each processor and is stored in the memory that belongs to each
processor. In order to explore the best split node, a communication occurs among the
entire processors.

In the vertical distribution, the training data is also divided evenly into many parts
where this data is then assigned to each processor. The whole data is only assigned to
each processor and is stored in the memory that belongs to each processor. In this type
of distribution, each processor stores in its memory only the whole data that is related
to it and the classes’ values. Therefore, each processor must evaluate its attributes when
the construction is being processed. Both data parallelisms are merged by the hybrid
parallelism with either the vertical distribution or the horizontal distribution, and the
function decomposition.

Chiu et al. [21] present a parallel sorting tree in order to reduce the execution time
during the calculation of the split criteria via the CUDA Data Parallel Primitives Library
(CUDPP) sorting algorithm. The CUDPP library is provided by the CUDA for sorting
and building data structures for the tree. However, the entire data is required by this
method to be loaded into the main memory at all times prior to applying the induction
over the sorting process. Therefore, the largest induced dataset is bounded by the size of
the memory. Additionally, the obtained results, datasets, and performance analysis of the
researchers’ work are not presented to highlight the effectiveness of their methodology.

Sharp [22] implemented a decision tree for forests data in the GPU via the High-Level
Shader Language (HLSL) and the Microsoft Direct3D Software Development Kit (SDK).
The researcher’s strategy for parallelizing the decision tree on the GPU is to perform
a mapping process for the data structure that includes the decision forest and the 2D
texture array. The move across the forest is done in a parallel way in each point included
in the input data based on the efficient use of a non-branching pixel shader. The training
data responses to a set of candidate features are calculated, where the responses are
disseminated through to a suitable histogram based on the use of a vertex shader. Thus,
the entire histograms would be used simultaneously with many different tree learning
algorithms. Nonetheless, the largest dataset that can be processed has a higher limit in
this method since it makes use of the data structure that is scaled with the size of the
dataset. This data structure must exist at all times in the main memory. However, the
methods of dividing the dataset for training data and testing data are not mentioned such
as the bagging and boosting algorithm.

Grahn et al. [23] attempt to parallelize both building and classification based on the
CUDA GPU Random Forest (CUDARF) learning algorithm. The researchers conducted
comparisons between their proposed method and the state-of-the-art random forests al-
gorithms (FastRF and LibRF) by using the Weka in terms of the accuracy, and by using
the 10-fold cross-validation test. However, Nasridinov et al. [24] claim that this method
is not appropriate for a massive amount of datasets if the size of the GPU memory is
smaller than the size of these datasets.

Nasridinov et al. [24] propose a ubiquitous approach for parallel computing in order
to build the decision tree onto the GPU. In their approach, they applied the divide-
and-conquer parallelism of the well-known decision tree learning, namely, the Iterative
Dichotomiser 3 (ID3) algorithm, based on two levels. The first level represents the outer
level where the tree is built node-by-node. The second level represents the inner level
where data records are being sorted through one node. However, the researchers did not
mention the dataset by which they use in their experiments. Furthermore, they did not
compare their proposed method in terms of the accuracy attribute. Additionally, the
authors did not clarify how they calculated the energy consumption.

Another work presented in the Interspeech 2010 Conference authored by Pilkington and
Zen [25] discusses an implementation process that is performed for the decision tree-based
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context clustering over the GPUs in order to construct a speaker dependent of the Hidden
Markov Model (HMM) that is based on a speech synthesis system. Experimental results
showed that the new implementation running on GPUs was about 9.5 times faster than
the conventional one running on CPUs.

3. Different Recent Parallel Techniques for Decision Tree. This section discusses
the decision tree using different recent parallel techniques other than the GPU technique.

The issue of reducing the time complexity in the decision tree elicitation of the train-
ing stage based on the use of the ParDTLT parallel threading algorithm is addressed
by Franco-Arcega et al. [26]. The parallel method was controlled and performed in the
training stage. Moreover, different datasets of different sizes were applied in the training
and validation stages. These comprise the Knowledge Discovery in Databases (KDD)
Donation, Weka Random, GalStar, Agrawal and PAMAP datasets. Additionally, the au-
thors compared their proposed algorithm with the following sequential algorithms: C4.5,
VFDT, YaDT and DTLT. The comparison included the classification quality and the
time complexity. The results showed that the execution time of the training process of
the ParDTLT algorithm was smaller than the ones obtained with the sequential algo-
rithms. On the other hand, ParDTLT was very competitive in terms of the quality of
classification.

A parallel decision tree construction algorithm is proposed by Boryczka et al. [27] in or-
der to make use of the Ant Colony Optimization (ACO). The main idea of their algorithm
is to speed up the construction of the tree by splitting the ants’ population into smaller
subpopulations by which the measurements are being performed in a parallel manner.
Five different tests were selected to be performed by the researchers. These tests were de-
rived from the UCI repository, namely: letter-recognition, connect-4, krkopt, poker-hand,
and pendigits. The implementation of the proposed algorithm was performed by using
the C++ programming language with the use of the Intel MPI Library. Nevertheless, the
researchers did not give their strategies of the parallel model, for example, on whether it
is a task/farming model or not.

A global decision tree system is implemented based on a parallel algorithm by Cza-
jkowski et al. [28] in order to enhance the speed of the decision tree evolutionary in-
duction. This system integrates the Message Passing Interface (MPI) paradigms and the
shared memory (OpenMP) together for performing this enhancement. Four artificially
produced datasets of many different attributes and characteristics were used by the re-
searchers. All datasets consisted of 100,000 instances. The authors compared the results
of their parallel algorithm with the sequential algorithm version. The parallel algorithm
outperformed the sequential one by reducing the time needed for the tree induction from
9 hours to 42 minutes. However, the authors did not compare the accuracy of the results
because the main aim of their work was to speed up the tree induction time.

Qu and Prasanna [29] propose the multi-threading technique based on the use of the
Field Programmable Gate Array (FPGA) and the openMP in order to allow the conversion
technique to perform a translation for the generic decision tree through many different
compact hash tables. They used Internet traffic classification datasets for testing the
decision tree. To evaluate the performance, the proposed design was prototyped on state-
of-the-art FPGA and multicore General Purpose Processors (GPPs). Experimental results
showed that, for a typical 92-leaf decision-tree, 533 Million Classifications Per Second
(MCPS) throughput and 26 ns latency on FPGA, and 134 MCPS throughput and 239
ns latency on multi-core GPP were achieved. Additionally, 6 × and 2.7 × speedups
respectively were obtained.

Ben-Gal and Trister [30] present an algorithm to construct parallel decision trees of
consistently non-increasing Expected Number of Tests (ENT) in order to highlight the
issue of gaining worse solutions when increasing the construction complexity. The authors
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mentioned that their algorithm can run on multiple processors where each processor builds
a separate decision tree. The proposed algorithm depends on the subset parameter (s)
which itself depends on the number of parallel processors. This allows increasing s without
facing the growth in complexity when additional processors are available. As a result, the
number of decision trees combinations can be decreased to O(2n).

Vukobratović and Struharik [31] propose a co-processor in order to apply it in the in-
duction process for the hardware aided decision tree based on the use of the evolutionary
approach called the Evolutionary Full Tree Induction co-Processor (EFTIP). This ap-
proach is used for speeding up the fitness evaluation task of the hardware since it is shown
to be proven that this task represents a bottleneck of the execution time. The comparison
of the HW/SW EFTI algorithm implementation with the pure software implementations
showed that the proposed HW/SW architecture offered substantial speedups for all the
tests performed on the selected UCI datasets. The authors mentioned that their approach
could use multiple memories to read data out. Additionally, they used parallel computing
in order to compute the sum of products in one of the equations they used. However,
the authors did not clearly mention the parallel method they used for the computation
process.

4. Conclusions. In this paper, the origin sources of the high computational demands
problem of building decision tree are presented. Additionally, the research efforts made
for solving this problem were underlined, particularly, when using the parallel computing
approaches. A review of many published state-of-the-art approaches was carried out in
order to form the direction of the future research in the area. Its suggested future direction
is to propose solutions, which can be offered based on this review, to the problem by using
multiple methods of parallel computing approaches in order to reduce complexity, in both
time and memory storage requirements. It can be concluded from this study that, in
spite of some limitations in the existing parallel-based decision tree presented in this
paper, the parallel processing methods are able to provide practical solutions. The need
for further research in utilizing parallel computing methods for solving this problem is still
much desired. Future efforts can possibly be directed to the implementation of parallel
techniques such as the hybridization between distributed and shared memory models, the
hybridization between GPU and CPU methods, or the hybridization between the data
decomposition and the function decomposition.
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