
ICIC Express Letters ICIC International c⃝2018 ISSN 1881-803X
Volume 12, Number 8, August 2018 pp. 759–766

AN IMPROVED HYBRID TEST FOR FEASIBILITY ANALYSIS
OF PERIODIC TASKS

Saleh Alrashed

Deanship of Admissions and Registration
Imam Abdulrahman Bin Faisal University
P.O. Box 1982, Dammam, Saudi Arabia

saalrashed@uod.edu.sa

Received January 2018; accepted April 2018

Abstract. Realizing the NP-completeness of the exact conditions for feasibility analysis
of hard real-time systems, there has been a growing interest in reducing the computational
cost of such techniques. In this paper, we propose a hybrid solution that is derived by
combining the existing necessary and sufficient-only conditions. The method splits the
task set into two parts and then determines feasibility of each part accordingly. Similar
techniques have been proposed recently but unlike existing approaches, the second part of
feasibility analysis is tested through necessary and sufficient condition with lowest prior-
ity first approach. Our experimentation results are aligned with theoretical formulation
and show that our hybrid solution presents significant improvement over existing algo-
rithms from performance perspective, especially when the system demands a higher CPU
utilization.
Keywords: Operating system, Real-time systems, Fixed-priority scheduling, Feasibility
analysis, Online schedulability test

1. Introduction. Real-time systems are defined as those systems in which the correct-
ness of the system depends not only on the logical result of computations, but also on
the time at which the results are produced [1, 2]. Due to implicit nature of period tasks
with the timing constraints and target domain, especially under hard real-time systems,
the schedulability analysis of such systems demands mathematical proven solutions and
cannot be left to statistical or average case analysis.

For predictable systems, fixed priority of a task is always preferred. Using fixed pri-
ority assignment, the highest priority task never misses its deadline when the system
is overloaded [1, 2, 4, 5]. For the systems where predictability is more important than
performance, fixed priority scheme is being used. Typical examples missile guidance sys-
tem, flight control systems, avionic control, power plants, automotive, medical devices,
robotics and organizations such as US-DoD, IBM, and General Motors [6, 7]. On the con-
trast, dynamic algorithms are considered better theoretically [8, 9]; however, this priority
assignment to individual tasks results in unpredictable behavior in overloaded scenarios
[2, 14, 15, 16, 17]. In this paper, we present a fixed-priority scheduling algorithm that
assigns the same priority to all jobs belonging to a task under uni-processor systems.

Rate Monotonic (RM) is the most predictable scheduling algorithm under fixed priority
scheduling. To answer the schedulability of a task set under RM scheduling algorithm,
the task set is subject analysis of feasibility tests. The task set is always RM schedulable
if it passes the test; otherwise, the set is declared infeasible. These feasibility tests are
divided into two main types: (i) Sufficient Condition (SC), (ii) Necessary and Sufficient
Condition (NSC). Till date, the complexity of SC is polynomial while NSC is pseudo
polynomial. Unfortunately, SC can only answer the feasibility of the system having 69%

DOI: 10.24507/icicel.12.08.759

759



760 S. ALRASHED

utilization while NSC can answer feasibly of a system as long as utilization is not more
than 100%; however, the associated complexity is very high. Recently, the focus has been
made on lowering the computation cost of RM feasibility test by combining necessary and
sufficient condition for faster feasibility tests.

Since RM algorithm maps the highest priority level to the task with shortest period
and gives the highest privity to the most critical task in the system. Under preemptive
scheduling, RM is fixed priority scheduling algorithm and CPU is always allocated to the
higher priority tasks when a decision has to be made. Nevertheless, the priority of tasks
always reflects which task will miss the deadline whenever the system becomes infeasible.
Authors in [20] established a mechanism for the faster feasibility analysis based on the
fact that if the system is infeasible, it is mainly because of the lower priority tasks and
not the highest priority, ablest. The work in [20] answers the feasibility of the system
much faster, especially when the system presents higher CPU demand.

Traditionally, the feasibility of the real-time system is determinedly in the priority order,
i.e., the feasibility of highest priority task is tested first and then the next task with one
level lower priority is tested and so on. However, the lower priority task potentially makes
the system infeasible and hence, authors in [10] established a formulation that integrated
the existing solution for faster feasibility analysis. We extend the work done in [10] by
determining the feasibility with NSC by determining the feasibility of the subset of tasks
using lowest priority first approach.

We propose a novel test for a faster feasibility test that guarantees 100% CPU utilization
by splitting the task set into two subsets. The first subset’s feasibility is determined with
“Inexact Condition (LL-bound [5])”, while the reaming task set’s feasibility is subject to
“Exact Condition”. As a main contribution of this work, we test schedulability of the task
set in ascending priority order starting from the lowest priority task in the system for the
2nd subset. This arrangement results in a faster feasibility analysis of the systems as the
2nd subset is undertaken by exact condition which is pseudo-polynomial. The proposed
technique is evaluated under various system utilization ranging from 70 to 100% for the
task set of size 5 to 50 and the results obtained are encouraging.

We divide rest of the paper into 4 sections. Section 2 introduces the preliminaries and
presents the task model for the problem formulation. The main results are presented in
Section 3, while experimental results are discussed in Section 4. Finally, the paper is
concluded in Section 5.

2. Preliminaries and Problem Formulation. Before we present the main contribu-
tion of this paper, we provide notations in Table 1 and definition below.

Before proceeding on a more detailed description, we first provide a few definitions and
notations that are used frequently in rest of the paper.

Definition 2.1. (Critical Instant [5]) In fixed-priority systems, every job ji,c must com-
plete before the next job Ji,c+1 of the same task τi. A critical of any task τi occurs when
one of its jobs ji,c is released at the same time as a job of a higher-priority task, i.e.,
ri,c = rk,lk for some lk for every k = 1, 2, . . . , i − 1.

Definition 2.2. (Higher Priority Subset) A represents a subset of task set τ having a
priority higher than τi.

Definition 2.3. (Lower Priority Subset) B represents a subset of task set such that B =
τ − A and not answerable by LL-bound.

Definition 2.4. (Simply Periodic Task Set [1]) A system of periodic tasks is simply peri-
odic (harmonic) if the period of each task is an integer multiple of the period of the other
tasks. That is, pk = npi, where pi ≤ pk and n is a positive integer (∀τi and ∀τk).



ICIC EXPRESS LETTERS, VOL.12, NO.8, 2018 761

Table 1. Notations

Notation Meaning
τ The set of periodic tasks
Ji,k k-th job of i-th task, τi ∈ τ
Ei Worst case execution time of τi

Pi Period of τi

Di Deadline of τi

Ui Utilization of τi

n Number of elements in Γ
U(N) Utilization of Γ
Wi(t) The cumulative workload due to τi at time t
priority(τi) Priority of τi

Ti Subset of task set having a priority higher than τi

Ri Maximum response time of τi

Si Set of scheduling points for τi

Hi(t) Set of scheduling points for τi where Hi(t) ⊆ Si

Li Schedulablility condition for τi

L Feasibility condition for τ

Definition 2.5. (Maximum Response Time [26]) The longest time ever taken by an in-
stance of a task from its release time until the time it completes its required computation.
For ji,c this time is denoted by Ri,c.

In our problem formulation, we assume a period task set having N tasks where each
task has a unique priority. Each task τi is represented by (Ei, Pi), where Ei is executions
time and Pi is the task period. All tasks arrive at critical instant and the maximum
response time of each job is less than or equal to the deadline. RM [5] policy is used
for priority assignment such that for any two tasks τi and τj, priority (τi) > priority
(τj) ⇒ period (τi) < period (τj), while ties are broken arbitrarily. RM is the optimal
static priority scheduling algorithm for implicit-deadline model (when deadlines coincide
with respective periods) [7, 11, 18, 19, 21, 22, 23]. The utilization of task τi is shown by
Ui = Ei/Pi. The cumulative utilization of periodic task system τ is defined as:

U(N) =
N∑

i=1

Ui (1)

The first feasibility test for scheduling the above formulated system under fixed-priority
scheme on single processor systems was first addressed by Liu and Layland [5] in 1973.
They derived the optimal static priority scheduling algorithm for implicit-deadline model
(when deadlines coincide with respective periods) called Rate Monotonic (RM) algorithm.
The test in [5] is called LL-bound [5], and according to LL-bound a periodic task system
of independents is RM schedulable if

U(N) ≤ N
(
21/N − 1

)
(2)

When N → ∞, N
(
21/N − 1

)
becomes ln(2). So any periodic system with utilization

less than 69% is RM feasible on single processor system. It can be seen from Equation
(2) that there are just N -iterations needed for determining the feasibility of the system
and hence the complexity is polynomial. An associated disadvantage is losing 1− ln(2)%
utilization. More techniques such as simply periodic task set can result in up to 100%
utilization but the constraints in that the task periods need to be in harmonic fashion. To
fix the utilization problems NSC conditions were prospered in [10, 14, 15, 16, 26, 27, 28].



762 S. ALRASHED

3. Improved Feasibility Test. The workload due to τi at time t has two parts: (i)
execution demand Ei of the task wi(t) and (ii) execution demands at the same point t
due to all higher priority tasks. In other words, the workload wi(t) of τi is expressed as:

wi(t) = Ei +
i−1∑
j=1

⌈
t

Pj

⌉
Ej (3)

Task τi is only schedulable at any time t when

Li = min
0<t≤Pi

(wi(t) ≤ t) (4)

Equation (3) is tested at all points Si as

Si = {apb|b = 1, . . . , i; a = 1, . . . , ⌊Pi/Pb⌋} (5)

The first exact condition known as Time Demand Analysis (TDA) was introduced in
[26] called TDA for RM feasibility analysis.

Theorem 3.1. [26] Given a set of n periodic tasks τ1, . . . , τn, a task τi can be feasibly
scheduled for all task phasing using the RM algorithm if and only if

Li = min
t∈Si

wi(t)

t
≤ 1 (6)

Theorem 3.2. [26] The task set is RM schedulable iff:

L = max
1≤i≤N

Li ≤ 1 (7)

To reduce the number of scheduling points in TDA, [12] derived Hyper-planes Exact
Test (HET). The HET suggests that a subset of points is enough to check the schedula-
bility of any task. This solution works on lowering original set Si to a reduced set Hi(t).
According to HET, the schedulability test of task τit begins with Pi and expands its search
space by:

Hi(t) = Hi−1

(⌊
t

Pi

⌋
Pi

)
∪ Hi−1(t) (8)

where H0(t) = {t}.
Similarly, Enhanced Rate Monotonic Time Demand Analysis (ETDA) was introduced

recently to further enhance the TDA. The ETDA helps avoid testing the feasibility of
tasks at unnecessary points during feasibility analysis by:

Li = min
t∈SZ

wi(t)

t
≤ 1 (9)

where Zi = S−Xi−1 and Xi−1 is the set of scheduling points at which the schedulability
of τi−1 is false.

Like [10], the feasibility of A to be tested with LL-bound and the remaining lower
priority task B are subject to the application of exact condition. We represent the work
done in [10] by Hybrid Test (HT). For the B, we use the lowest priority first approach
[20]. B has many tasks and the unitization of these tasks is

∑
B Ui. However, LL-bound is

not applicable for this part as A is already addressed with LL-bound. Eventually, B has
to be tested with NSC. Again, the issue is whether to use this part with highest priority
first or lowest priority first technique. All the tasks in the B have lower priorities and
it is very likely that the cumulative demand of τ is higher and that is why only A was
addressed with LL-bound. In this situation, we opt for the lowest priority first approach
as it concludes the feasibility of B faster than the highest priority first counterpart. We
denote the utilization of A by U(A). In the remaining part of this paper, we represent
our work by Improved Hybrid Analysis (IHA) and explain its working in Algorithm 1. It



ICIC EXPRESS LETTERS, VOL.12, NO.8, 2018 763

Algorithm 1.

procedure IHA(τ)
if (U(N) ≤ 0.69) then

τ is schedulable;
exist();

else
B = τ – A: (U(A) ≤ 0.69) // Tasks are schedulable when utilization is below 69%
as // per LL-bound

end if
for all τi ∈ B: shorter periods have higher order do

if (Li ≤ 1) then
τi is schedulable;

end if
end for
if (L ≤ 1) then

B is feasible;
else

B is infeasible;
end if
end procedure

can be seen in Algorithm 1 that the feasibility of the task set is influenced by size of B
and overall system utilization.

4. Experimental Evaluation. In this section, we compare our work with two rele-
vant feasibility methods namely TDA and HT. We generate random task set of size
5, 10, 15, . . . , 50 with a step of 5 tasks. For each task τi, execution time Ei and task peri-
ods Pi of an individual task τi are obtained with uniform distribution pertaining the task
periods of tasks. We implicitly assume here that task deadlines are in agreement with
task periods and task priorities are assigned as per RM policy.

In Figures 1-4, we compare the run time of IHA with the existing exact feasibility
analysis techniques. The experimentation is done on Intel Xeon machine with 12MB L3-
cache and 48GB memory. For each run, we keep the system utilization at 70%, 80%, 90%,
and 100% for evaluating these tests. We measure the time in millisecond in the figures
given below. To have confidence in our results, we run each experiment 500 times for the
same task set. The x-axis shows the size of the tasks in the system while y-axis represents
the time taken by each test.

It can be seen that the time taken by all feasibility tests (TDA, HT and IHA) is quite
low, especially for HT and IHA. The reason behind this behavior is TDA only relying on
NSC and hence all tasks need to pass through exact feasibility analysis, while HT and
IHA also integrated the SC and hence converge much due to low complexity of SC. This
is due to the reason that the utilization is below the permissible LL-bound and hence it is
applicable in this scenario. With increased task set size, the graphs are still low and the
number of tasks becomes irrelevant here. When the utilization is increased, then more
tasks need to be anted by the NSC. It can be seen from Figures 1-4 that more utilization
increases all tests need more time to determine feasibility of the task. TDA analyzes all
tasks and now the task periods of the tasks are larger and hence more scheduling points
have to be tested before answering the feasibility of the task. However, the IHA also
suppresses HT as IHA is investigating the set with NSC but using the lowest priority first
approach and hence the performance is better than existing counterparts. From Figures
3 and 4, it can be seen that IHA concludes the feasibility much faster. The explanation



764 S. ALRASHED

5 10 15 20 25 30 35 40 45 50
0.1

0.15

0.2

0.25

0.3

0.35

Tasks number

T
im

e 

 

 
TDA
HT
IHA

Figure 1. Performance at 70 percent system utilization

5 10 15 20 25 30 35 40 45 50
0.1

0.15

0.2

0.25

0.3

0.35

Tasks number

T
im

e 

 

 
TDA
HT
IHA

Figure 2. Performance at 80 percent system utilization

for this behavior is that real-time system under RM scheduling is hard to be scheduled
on single processor system with higher utilization such as 90% or 100% and hence the
system becomes infeasible. As discussed in Section 3, lower priority tasks are more likely
to miss the deadline in such cases and hence the feasibility analysis with lowest priority
first is concluded much faster. The results obtained in Figures 3 and 4 are in accordance
with our observation that B becomes infeasible with higher system utilization and hence
IHA exhibits better performance with higher system utilization.

5. Conclusion. We explored a new dimension of feasibility analysis of hard real-time
systems by splitting a periodic task set into two subset. This arrangement helped lower
the computation cost of feasibility analysis under RM scheduling algorithm without com-
promising the timing constraints of the system. The RM feasibility of first part was



ICIC EXPRESS LETTERS, VOL.12, NO.8, 2018 765

5 10 15 20 25 30 35 40 45 50
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Tasks number

T
im

e 

 

 
TDA
HT
IHA

Figure 3. Performance at 90 percent system utilization

5 10 15 20 25 30 35 40 45 50
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Tasks number

T
im

e 

 

 
TDA
HT
IHA

Figure 4. Performance at 100 percent system utilization

determined with LL-bound and the later part was analyzed with time demand analy-
sis using lowest priority first approach. Experimental results showed that our technique
performed well under various system utilization ranging from 70% to 100% as compared
to the existing solutions from the runtime perspective. As future research directions, it
will be interesting to study the effect of segregating the task set based on utilization of
individual tasks for faster feasibility analysis.

REFERENCES

[1] J. W. S. Liu, Real Time Systems, Prentice Hall, 2000.
[2] C. M. Krishna and K. G. Shin, Real-Time Systems, McGrawHill, 1997.
[3] H. C. R. Ha and J. W. S. Liu, Experimental analysis of timing validation methods for distributed

real-time systems, The Journal of Supercomputing, vol.25, no.1, pp.2169-2174, 2003.



766 S. ALRASHED

[4] S. Alrashed, J. Alhiyafi, A. Shafi and N. Min-Allah, An efficient schedulability condition for non-
preemptive real-time systems at common scheduling points, The Journal of Supercomputing, vol.72,
no.12, pp.4651-4661, 2016.

[5] C. L. Liu and J. W. Layland, Scheduling algorithms for multiprogramming in a hard real-time
environment, Journal of the ACM, vol.20, no.1, pp.40-61, 1973.

[6] J. Orozco, R. Cayssials, J. Santos and R. Santos, On the minimum number of priority levels required
for the rate monotonic scheduling of real-time systems, Proc. of the 10th Euromicro Workshop on
Real Time System, 1998.

[7] S. Alrashed, Reducing power consumption of non-preemptive real-time systems, The Journal of
Supercomputing, vol.73, no.12, pp.5402-5413, 2017.

[8] L. George, N. Riverre and M. Spuri, Preemptive and non-preemptive real-time uniprocessor sched-
uling, Research Report RR-2966, INRIA, France, 1996.

[9] I. Iimura, Y. Moriyama and S. Nakayama, Consideration on distributed immune algorithm in job-
shop scheduling problem, International Journal of Innovative Computing, Information and Control,
vol.5, no.12(B), pp.5003-5010, 2009.

[10] N. Min-Allah and S. U. Khan, A hybrid test for faster feasibility analysis of periodic tasks, In-
ternational Journal of Innovative Computing, Information and Control, vol.7, no.10, pp.5689-5698,
2011.

[11] M. B. Qureshi, M. A. Alqahtani and N. Min-Allah, Grid resource allocation for real-time data-
intensive tasks, IEEE Access, vol.5, pp.22724-22734, 2017.

[12] E. Bini and G. C. Buttazzo, Schedulability analysis of periodic fixed priority systems, IEEE Trans.
Computers, vol.53, no.11, pp.1462-1473, 2004.

[13] N. Min-Allah, Y. Wang and J. Xing, Enhanced rate monotonic time demand analysis, International
Journal of Computer Sciences and Engineering Systems, 2007.

[14] N. C. Audsley, A. Burns, K. Tindell and A. Wellings, Applying new scheduling theory to static
priority preemptive scheduling, Software Engineering Journal, vol.8, no.2, pp.80-89, 1993.

[15] M. Sjödin and H. Hansson, Improved response-time analysis calculations, Proc. of the 19th IEEE
Real-Time Systems Symposium, pp.399-409, 1998.

[16] S. Baruah and K. Pruhs, Open problems in real-time scheduling, Journal of Scheduling, vol.13, no.6,
pp.577-582, 2010.

[17] N. Min-Allah, S. U. Khan, N. Ghani, J. Li, L. Wang and P. Bouvry, A comparative study of rate
monotonic schedulability tests, The Journal of Supercomputing, vol.59, no.3, pp.1419-1430, 2012.

[18] T. W. Kuo, L. P. Chang, Y. H. Liu and K. J. Lin, Efficient online schedulability tests for real-time
systems, IEEE Trans. Software Engineering, vol.29, no.8, pp.734-751, 2003.

[19] T. Ma, Q. Yan, D. Guan and S. Lee, Research on task scheduling algorithm in grid environment,
ICIC Express Letters, vol.4, no.1, pp.1-6, 2010.

[20] N. Min-Allah, S. U. Khan, X. Wang and A. Y. Zomaya, Lowest priority first based feasibility analysis
of real-time systems, Journal of Parallel and Distributed Computing, vol.73, no.8, pp.1066-1075, 2013.

[21] W. Jia, B. Han, C. Zhang and W. Zhou, Delay control and parallel admission algorithms for real-time
anycast flow, The Journal of Supercomputing, vol.29, no.2, pp.197-209, 2004.

[22] N. Min-Allah, I. Ali, J. Xing and Y. Wang, Utilization bound for periodic task set with composite
deadline, Journal of Computers and Electrical Engineering, vol.36, no.6, pp.1101-1109, 2010.

[23] N. Min-Allah, S. U. Khan and Y. Wang, Optimal task execution times for periodic tasks using
nonlinear constrained optimization, The Journal of Supercomputing, vol.59, no.3, pp.1120-1138, 2012.

[24] R. I. Davis, A. Zabos and A. Burns, Efficient exact schedulability tests for fixed priority real-time
systems, IEEE Trans. Computers, vol.57, pp.1261-1276, 2008.

[25] E. Bini, G. C. Buttazzo and G. Buttazzo, A hyperbolic bound for the rate monotonic algorithm,
Proc. of the 13th Euromicro Conference on Real-Time Systems, pp.59-66, 2001.

[26] J. P. Lehoczky, L. Sha and Y. Ding, The rate monotonic scheduling algorithm: Exact characterization
and average case behavior, Proc. of the IEEE Real-Time System Symposium, pp.166-171, 1989.

[27] E. Bini, G. C. Buttazzo and G. Buttazzo, Rate monotonic analysis: The hyperbolic bound, IEEE
Trans. Computers, vol.52, no.7, pp.933-942, 2003.

[28] L. Chen, Y. Lyu, C. Wang, J. Wu, C. Zhang, N. Min-Allah, J. Alhiyafi and Y. Wang, Solving
linear optimization over arithmetic constraint formula, Journal of Global Optimization, vol.69, no.1,
pp.1-34, 2016.


